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Consider the system of particles on Z a where particles are of two types A and 
B--and execute simple random walks in continuous time. Particles do not 
interact with their own type, but when an A-particle meets a B-particle, both 
disappear, i.e., are annihilated. This system serves as a model for the chemical 
reaction A + B ~ inert. We analyze the limiting behavior of the densities pA(t) 
and pB(t) when the initial state is given by homogeneous Poisson random fields. 
We prove that for equal initial densities pA(0)=pB(0) there is a change in 
behavior from d~<4, where p. l ( t )=pB(t )~C/ t  d/4, to d>~4, where pA(t)= 
pB(t) ~ C/t as t ~ oo. For unequal initial densities pA(0)< pc(0), pA(t)~ e - c ' / 7  
in d = l ,  pA(t )~e  -ct/l~ in d=2 ,  and pA(t )~e  -ct  in d~>3. The term C 
depends on the initial densities and changes with d. Techniques are from 
interacting particle systems. The behavior for this two-particle annihilation 
process has similarities to those for coalescing random walks (A + A ~ A) and 
annihilating random walks (A + A ~ inert). The analysis of the present process 
is made considerably more difficult by the lack of comparison with an attractive 
particle system. 

KEY W O R D S :  Diffusion-dominated reaction; annihilating random walks; 
asymptotic densities; exact results. 
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1. Introduction 

Consider a system of particles of two types on 2 d, A and B, which 
execute simple random walks in continuous time at rate 1. That is, the 
motion of different particles is independent and a particle at site x will 
jump to a given one of its 2d nearest neighbors at rate 1/2d. Particles are 
assumed not to interact with their own type multiple A particles or multiple 
B particles can occupy a given site. However, when a particle meets a particle 
of the opposite type, both disappear. (When a particle simultaneously 
meets more than one particle of the opposite type, it will only cause one 
of these particles to disappear.) We call this system a two-particle 
annihilating random walk. 

One needs to specify an initial measure for the process. Two possibil- 
ities suggest themselves almost immediately. One can, on the one hand, 
independently throw down A and B particles according to the homoge- 
neous Poisson random measures with probabilities 

P[j  type-A particles at x]  = e-rA(rA)J/j! 
(1.1) 

P[ j  type-B particles at x ]  = e-rB(rB)J/j!; 

if there are initially both A and B particles at x, they immediately cancel 
each other out as much as possible. Another possibility is to assume that 
the initial state at each site is independent with a fixed probability of there 
being a single A particle, a single B particle, or no particle. Since our 
results (analyzing the system as t ~ oe) hold equally well for both initial 
measures (or for that matter, for anything "sufficiently ergodic"), we 
restrict ourselves for concreteness to the above Poisson random field 
construction. Associate with each A particle the value - 1 and with each B 
particle the value 1. We denote by i t  s 7/~ the random state of the system 
at time t and by ~,(x)~7/ the signed number of particles at x e Z  d, i.e., 
i t ( x ) =  ( #  B particles at x ) - ( #  A particles at x). We can think of 4o- as 
the state before A-type and B-type particles initially at the same site have 
annihilated each other. 

The two-particle annihilating random walk can serve as a model for 
the irreversible chemical reaction A + B ~ inert, where both particle types 
A and B are mobile. A and B can also represent matter and antimatter. 
There has been much interest in this model in the physics literature over 
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the last several years following papers by Ovchinikov and Zeldovich (It and 
Toussaint and Wilczek(2); see Bramson and Lebowitz (3), where the results 
presented here were first announced, and refs. 4-8 for a more complete set 
of references. The main concern has been with the behavior of the densities 
in a spatially homogeneous system, i.e., with the expected number of A and 
B paf'ticles per site, say the origin, 

pA(t) = E[ # A particles at 0 at time t] 
(1.2) 

pB(t) = E[ # B particles at 0 at time t], 

as t--* oo. (The density of course does not depend on the site x.) The 
two basic cases are when (a) 0 < p A ( 0 ) = p B ( 0 )  (equal densities) and 
(b) 0 < p ~ ( 0 ) < p B ( 0 )  (unequal densities). Note that (a) corresponds to 
0 < r A = r B and (b) to 0 < rA < r~. Since p~(t) - pA(t) must clearly remain 
constant for all t, one has pA(t)= pB(t) in (a). Since 

lira pA(t)=O (1.3) 
t ~ o o  

will hold, 

lira p,~(t) = pB(0) - pA(0) > 0 (1.4) 
t ~ o o  

in (b). The question then is at what rate the convergence in (1.3) holds. In 
case (a) there has been general agreement on the rate of convergence 
whereas in case (b) there have been many contradictory claims; refs. 7 
contain the correct time asymptotics (gd(t) in (1.22)). Nowhere have we 
found the correct density dependence of the coefficients (Ca in (1.23)). The 
results have at any rate not been rigorous from a mathematical point of 
view. It is the purpose of this article to provide such an approach. We start 
with some heuristics. 

Equal Densities 

For pA(0)=pB(0),  one can reason that pA(t) should decrease like 
1/t a/4 for d~<4 and like 1/t for d~>4. The standard logic is that if one 
"neglects" the diffusive fluctuations in the number of the two types of 
particles present in a local region, as can be achieved physically by 
vigorous stirring, one can treat the positions of particles for the two types 
as being independent. The rate at which A particles meet B particles is then 
proportional to the density of each type present. This gives the "law of 
mass action" or mean field behavior, 

apA(t) 
- - -  kpA(O p . ( t )  (1.5) 

dt 
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for appropriate k > 0. Since pA(t)= pB(t), we have 

dt 
and so 

(1.6) 

pA(t) ,~ 1/kt, for large t. (1.7) 

Throughout the article we shall use the following convention regarding 
" ~ "  and " ~ " :  by a(t)~ b(t) we mean that a(t)/b(t)~ 1 as t ~  or, whereas 
by a(t)~ b(t) we only mean that these functions are "close"--a(t)/b(t) is of 
magnitude 1, or when appropriate, log a(t)/log b(t) is of magnitude 1. 

One can, on the other hand, also reason as follows. (This will be made 
precise in Section 2.) Let DR denote the cube of side R which is centered 
at the origin. Also, let 

DR(t) = ( # B  par t ic les) -  ( # A  particles) at time t in DR. (1.8) 

We denote by ~/, the stochastic process which behaves the same as 4,, 
except that particles merely execute random walks without interacting 
(annihilating) when meeting other particles. It seems reasonable to guess 
that 

gul~R(t;~)--7~R(O;~)l]~g[tT~R(t;rl)--7~R(O;rl)t] (1.9) 

for large R. It is not difficult to show for rA = rB that 

g[lT~R(t;q)--7~R(O;tl)l]<~Cl,ax~AR(a-l)/2tl/4 (1.10) 

for appropriate Cl.a. If one believes (1.9) and (1.10), then 

E[tT~R(t;~)--7~R(O;~)t]<~CI,aX/-~AR(a-')/2t 1/4. (1.11) 

But for r A = re, 

E[I~3R(0; 4)1 ] >~ Cz.a X~AA Ra/2 (1.12) 

for appropriate constants Cza. That is, there is a local fluctuation in the 
numbers of the A and B particles. By (1.11) and (1.12), 

e[l~R(t; ~)t] ~ C2,~,j~ R~/~-C~.~,,flYj~ R(~- :~t '/~. (1.13) 

Now choose R at time t to be R,=ax/~ .  For a large enough, (1.13) is at 
least b ~ RJ/2 for some b > 0. By symmetry, 

pA(t) >>- �89 4)1 ]. (1.14) 



Asymptotic Densities for Two-Particle Annihilating RWs 301 

Plugging in the bound for ~R,(t; 4) and substituting for R t, we obtain 

p A( t ) ~ C N~AAII2 d/4, (1.15) 

with c = b/2a d/2. 
One needs to reconcile (1.15) with (1.7). The standard heuristics are 

that the term (1.15) measuring local fluctuations dominates in d < 4 ,  
whereas the mean field limit in (1.7) is accurate for d~>4. The densities 
pA(t) and p~(t) should therefore decay asymptotically like t d/4 for d~<4 
and t 1 for d~>4. Our first result verifies this behavior. 

Theorem 1. Assume that r~ = rs > 0 with the initial measures given as in 
(1.1). There exist positive constants cd and Ca such that 

<.pA(t)=pB(t)<. C ,f ;t d/4, d<4, 

c4(x/~A v I ) / t<~pA(t )=pB(t )<.C4(~AV 1)/t, d = 4 ,  (1.16) 

cd/t <~ pA(t) = pB(t) <~ Cd/t, d> 4, 

for large enough t. 

Presumably, td/4pA(t ) in d~<4 and tpA(t) in d~>4 have limits as t ~  ~ ,  
although our techniques do not show this. 

The asymptotic densities given here share certain similarities in common 
with those for two related simpler models. As done here, one can define a 
process consisting of particles on 7/a which execute independent simple 
random walks except when two particles attempt to occupy the same site. 
We now assume, however, that there is only one type of particle (say A), 
and that when two particles attempt to occupy the same site either (a) they 
coalesce into one particle and afterward behave as just one particle, or 
(b) they annihilate one another. The first model can be interpreted as the 
chemical reaction A + A ~ A, and is called coalescing random walk, while 
the second model corresponds to A + A ~ inert, and is called annihilating 
random walk. For  each of these models at most one particle is permitted 
per site. It is most natural to consider the state where all sites are occupied 
as the initial state although the same limiting behavior holds for a much 
larger class of states. 

The coalescing random walk is attractive. This says, basically, that 
adding more particles to the system initially will not diminish the number 
of particles later on. It is also the dual of the voter model. (Liggett (9) is the 
most complete general reference on interacting particle systems. Griffeath (1~ 
and Durrett  (11) are also useful references and emphasize the role of duality.) 
For these reasons, it is possible to analyze the density p(t) and show that: 
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1 
p(t) ~ x ~  t, d = 1, 

1 log  t 
d = 2 ,  

7c t 

1 
~ - -  d>~3, 

yat' 

(1.17) 

for appropriate Ya. The case d = 1 is easy and is an application of the above 
duality and the local central limit theorem. For d>~2, see Bramson and 
Griffeath (12~. The annihilating random walk can, it turns out (Arratia(13)), 
be compared directly to the coalescing random walk. Let ~(t) denote its 
density. Since ~(t)/p(t) ~ 1/2 as t --* 0% one has 

~(t)~ �89 (1.18) 

Note that for coalescing and annihilating random walk, d =  2 is where the 
crossover in asymptotic behavior p(t), ~(t) occurs, rather than at d =  4 as 
found here for A + B ~ inert. This is connected in the first case with the 
recurrence of random walk in d ~< 2 and its transience in d > 2. 

Unequal Densities 

For pA(0)< p~(0), the asymptotic behavior of pA(t) should be quite 
different. Since lim,~oo pB(t)=pB(O)--pA(O)>0, there is always at least 
density b = p c ( 0 ) - p , ~ ( 0 ) >  0 of type B particles in the population. The 
density pA(t) must therefore decrease much more rapidly than if 
pA(0) = p~(0). From (1.5), one would obtain 

dp~(t) 
- - -  k(b + o(1)) pA(t). (1.19) 

dt 

Consequently, one might expect that 

pA(t) = pA(O) e - -k (b  + o(1 ))t, (1.20) 

On the other hand, as in the case p~(0)=  pB(0), local fluctuations could 
conceivably alter the relative proportions of type A and type B particles 
locally, and cause a different rate of decay. Presumably, as before, this 
change would be associated with lower dimensions. There are various 
different conclusions in the physics literature. Here, we show the following: 
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Theorem 2. 
in (1.1). There exist positive constants A a and )~a such that 

Assume that 0 < rA < re with the initial measures given as 

e x p [ - A a 0 a g a ( t ) ]  <~ pA(t) <~ e x p [ - 2 a 0 a g a ( t ) ]  

for large enough t, where 

ga(t) = x / t ,  d=  1, 

-- t/log t, d = 2, 

= t ,  d>~3, 

(ha= ( r e -  rA)2/re, d =  1, 

= r e - r a ,  d>>.2. 

and 

(1.21) 

(1.22) 

1.23) 

The mean field limit is thus valid for d > 3 ,  but not in d =  1,2. The 
dependence on initial densities is different in d =  1 than that in d > 1, which 
corresponds to (1.20). The reason is the presence of greater fluctuations in 
d = l .  

The methodology employed for Theorems 1 and 2 involves in both 
cases different estimates for upper and lower bounds. Lower bounds for 
rA =rB in d~<4 are obtained in Section 2 (Proposition 1). The reasoning 
follows the outline given in (1.9)-(1.15) and is quite simple. The mean field 
lower bounds in (1.7) turn out (unexpectedly) to be much trickier; these 
are given in Section 3 (Proposition 2). The upper bounds for rA = re are 
derived in Section 4 (Proposition 3). Together with certain estimates from 
Section 2, they involve amplification of a technique introduced in ref. 12. 
The behavior for rA < re is given in Sections 5, 6, and 7. The derivation 
of the lower bound in Section 5 is relatively easy if one neglects the 
dependence on rA, re, but requires more preparation as formulated in 
(1.21)-(1.23) (Proposition 4). The derivation of the upper bound takes 
some time and is given in Section 6 for d >  1 (Proposition 5) and in 
Section 7 for d =  1 (Proposition 6). 

Some Formalism 

The type of stochastic process considered here can be rigorously 
constructed by a slight modification of the standard framework of interacting 
particle systems (1~ It is a continuous time Markov process whose set of 
states is E Z r a  positive value at a site x ~ ya  denotes the presence of B 
particles, whereas a negative value the presence of A particles. If there are 

822/62/1-2-20 
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j type-B particles at x, we can think of them as inhabiting "levels" 
l = 1, 2 ..... j, whereas if there are j type-A particles at x, we can think of 
them as inhabiting levels I=  -1 ,  -2,.. . ,  - j .  The evolution of the system of 
particles can be completely specified by a percolation substructure ~.  At 
each site x e 7/d one can construct a family of independent exponential mean-1 
random variables Wx, t(k), le  77, k ~ 77 +. The random variables Tx, t(k) = 
Z~= 1 Wx, t(i), k E 77 +, are to be the times at which "alarm clocks" go off. At 
each such time Tx, t(k), an arrow is laid down which points from x to one 
of its 2d immediate neighbors, each being chosen with probability 1/2d; the 
particle at level l at position x, if there is one, jumps in the direction 
specified by the accompanying arrow. There may be, after a jump, more 
than one particle at a given level at a site; there may also be "holes," with 
lower levels not being occupied (either due to annihilation or a vacancy). 
After each particle moves, we therefore reorder the particles at both the 
former and target sites to fill up levels in the order specified above. For 
example, suppose that at site x the levels 1-4 are occupied when the alarm 
clock at level 2 goes off. Since the departure of the B particle at level 2 
creates a hole at x, the B particles at levels 3 and 4 are immediately 
reassigned to levels 2 and 3. If the target site had particles at levels 1 and 
2, it will afterwards have particles at levels 1-3. If it had particles at levels 
- 1  and - 2 ,  then one of these A particles will be annihilated by the arriv- 
ing B particle, and the site will afterwards have a particle at - 1 .  This 
procedure defines the evolution of the system for all time. It will be utilized 
at various points in the article. More detail on the corresponding percolation 
substructure with only one level is given in refs. 10 and 1 1. 

The probability space f2 can be given concretely by N and the initial 
configuration on 77d. (Occasionally, such as in Section 3, we will enlarge the 
space slightly by including additional information at t = 0.) ~, will stand 
for the a-algebra generated by 4o- and by the percolation substructure up 
to time t; o~ ~ for the a-algebra generated by ~-s, 0 ~< s ~< t; and ~oo, ~- ~ for 
the a-algebras at t = oe. Clearly, 4, ~ f f~ c 4 .  

2. Lower Bounds for Equal Densities, d <~ 4 

In this section we will show that pA(t) decays at most like Cd ~ A / t  d/4 
for all dimensions d if rA = re. For  d~< 4, this will provide us with the 
correct lower bound. The proof is not difficult and follows from three 
elementary lemmas which will also be useful in the proof of the upper 
bound. As sketched in (1.9)-(1.15), the basic point is that one can compare 
our process 4 with the process t/having the same percolation substructure 
as 4, but where particles execute random walks which do not interact. This 
is done in Lemma 2.1. In Lemma 2.2 we measure how much r /can change 
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up to time t. Lemma 2.3 gives a simple estimate on ~o. The proof of 
Proposition 1 puts these results together. 

Here and in later sections, we will need to introduce various constants 
for our calculations. When these values are not important, we shall label 
them as, for example, C1, C2, C3 .... or cl, c2 ..... When there is no chance 
of confusion, these constants will be "recycled" in different sections. Also, 
although not stated explicitly, these constants will be allowed to depend on 
d. To explicitly exhibit dependence on d we shall use the notation Ck, a and 
Ck.d. We also mention here that we will generally ignore the fact that the 
number of lattice sites in the various cubes D R of side R we shall use 
depends discontinuously on R; the number of lattice sites also varies 
somewhat for translates of D R. All we need is that for R not too small, this 
number differs from R a by at most a constant factor, which we will suppress. 

Lemma 2.1 states that the average value of any convex function ~0 of 
the difference of the numbers of A and B particles in DR at time t will be 
at least as large for q as for r The basic reason is that pairs of A and B 
particles in ~ which annihilate can be thought of as being forced to remain 
together forever; this is consistent with annihilation. Consequently, after 
their collision both or neither is in DR. For q, one more or one less net 
particle may be in DR (A-type = - 1  or B-type = 1) since these particles do 
not remain together. By symmetry, either outcome is equally likely. The 
lemma will follow from this and the convexity of ~o. 

Lemma 2.1. Set 

~R(t;-)  = ~R(t; . ) - x ,  

where the random variable X is independent of the percolation substructure 
of r (and hence also of that of r/). Assume initial data as in (1.1). Then 

for any convex function q~ : ~ ~ R, 

E~p(~3R(t; ~)) ~< Eq~(~R(t; t/)) (2.1) 

for all t, R. 

As immediate consequences, one has the following two corollaries. Here, 
we set 

~ R ( t  ;" ) = ~ R ( t ; "  ) -- ~ R ( 0 ; "  ). 

Corollary 1. For all t, R, 

Corollary 2. 

EI~>R(t; ~)1 ~ EI~R(t ;  ~/)1- 

For  all t, R. 

(2.2) 

Etr~R(t; ~)1 ~< EI~R(t ;  q)l. (2.3) 
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Proof of Lemma 2.1. A particle in 4 evolves identically to the corre- 
sponding particle in t /up  until the time it meets a particle of the opposite 
type; it then disappears. The corresponding particle in t 1 and the particle of 
opposite type evolve after this time by executing random walks which are 
(except for their starting positions) independent of N f  for all t. Let 

y(t)=7~R(t;tl)--~)R(t;~)=TbR(t;tl)--fbR(t;~ ). (2.4) 

Y(t) compares the imbalance in the number of A and B particles in DR for 
t/t versus 4,. Note that since A and B particles evolve in the same manner, 
E[ Y(t) [ Y~]  and E[  - Y(t) ] ~ ]  have the same distribution. Consequently, 

E[~o(~R(t; '7))Ig~] 
= E[~o(~R(t; 4) + Y(t))l ~ ]  

= ~, P [ Y ( t ) = k l ~ f ]  E[q~(~R(t; ~)+k)§ ~ ) - k ) l ~ ]  
k = 1  

+ P[ g(t) = 0 loaf ]  E[q~(~R(t; #.))1 ~ f ] .  (2.5) 

By the convexity of ~0, this is 

(2.6) 

Taking expectations, we obtain 

E[~0(~R(t;q))]  >~E[q,(~R(t; 4 ) ) ;  I 

Note that the initial data are used only to ensure that the processes, and 
hence Y(t), are well defined. 

In Lemma 2.2 we compute upper bounds for E[4~R(t; t / )[]  and 
E[]~R(t ;  t/)[]. For both we use 

J/R(t ; t / ) -  total number of particles at time t in DR. (2.7) 

Since the subprocesses of t/consisting of just the A-type particles and just 
the B-type particles are Poisson distributed with densities rA = r~ for all t, 
one can obtain a copy of t /by first designating a particle and then choosing 
its type with equal probability. [DR(t;t/)[ should therefore be of order 

x/d/R(t; tl). For [mR(t; t/)[ we apply the same reasoning while noting that 
the number of particles to pass through 8DR (the boundary of DR) by time 
t is of order (x/~ A R)R a 1, 2dRd-I being the surface area of DR 
((sl A S2) = min(sl, s2)). 
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Lemma 2.2. Assume initial data as in (1.1) with rA=r  B. Then 

(a) EI~R(t;~/)I < e l  ~AA Rd/2, 
(b) E]~)R(t;tl)l <C2~AA (I 1/4 A R1/2)R (d 1)/2. 

Proof. The proof of (a) is simple. As mentioned above, DR(t; q) is just 
the sum of JgR(t;t/) independent copies of Y, where P l Y =  _+1]=1/2. 
Since EJr q ) = 2rA R d, 

O'2(~)R(/; q)) = 2rAR d. (2.8) 

(As noted earlier, we do not worry about whether the cube DR contains 
exactly R a sites.) Part (a) then follows from Jensen's inequality. 

Note that application of (a) at times t and 0 implies 

El  (t; -<< 2Cl R d/2. 

To obtain (b), it therefore suffices to show that 

E[~R(t;  q)l ~< C2 ~ tl/4R (d- 1)/2 (2.9) 

Let 
.~~ r/)= total number of particles which are on opposite 

sides of 0DR at times 0 and t. (2.10) 

Specify c~D R so that c3D R c~ Zd= ~ to avoid ambiguity. JC/~P is then the 
number of particles which have crossed ~?DR an odd number of times. For 
(2.9), it suffices to show 

EjC[oRP(t; tl) < C3r Atl/2 R d I, (2.11) 

since one can compute variances as in the first part. 
By the symmetry of the random walk, the expected number of particles 

exiting DR is the same as the expected number entering. To exit, a particle 
needs to cross one of the 2d faces of D R. Let X t denote a one-dimensional 
simple random walk with Xo = 0. By the translation invariance of the 
motion of the particles, we have 

JR+ 1] 
E~CdRP(t;rl)<~(2rA)(2d)R d I ~ P[X,>~k] 

k=l 

<<. 4drA R d-1 ~', P[X,  >~ k]. (2.12) 
k--i 

Now, note that 

E[e ~  ~ +e  ~  
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Chebyshev's inequality therefore gives 

{ ( O+e-O 
P[Xt>~k ] ~<exp t . 2 

for 0 >~ O. Plugging in 0 = log(1 + k/t), this 

exp 1 t 

e k2/2(t + k) 

This bound gives 

k = l  

Brarnson and Lebowitz  

 )0k} 

k - - 1  k = l  

4 f o  (e-X2/4~+e x/4) d x = x ~ + 4 "  (2.13) 

For t 4 1, it is easy to check that Zk~ 1 P[Xt >1 k] ~ const, t. Together with 
(2.12) and (2.13), this implies (2.11), and hence demonstrates (b). | 

We also observe that: 

Lemma 2.3. Assume initial data as in (1.1) with rA =rB. Then for large 
R and appropriate C4 > 0, 

EI R(0; 3)1 >/C4 R 

Proof. As in Lemma 2.2, ~R(0; 4 ) = ~ R ( 0 ;  ~/) is the sum of ~/'R(0; 4) 
independent copies of Y, with P[Y= + l ]  = 1/2. Since EJ{R{0; 4)= 2rAR d 
and a2(J{R(0; 4))= 2rA Ra, by Chebyshev's inequality, 

P[J///R(0; ~)/> r AR d] >1 1 -- 2/r ARd~ 1/2 (2.14) 

for large enough R. By the central limit theorem, 

P I t ' R ( 0 ;  4)1 ~> ~ A  Ra/21 J/R(0; ~)>~raR a] >~ Cs (2.15) 

for appropriate Cs > 0. So 

EJf3R(0; 4)[ >>- C5 ~ Ra/2/2 = C 4  N~AA Rd/2" II 

We can now follow the outline presented in the introduction through 
(1.15) to prove Proposition 1. Proposition 1 supplies the lower bound in 
Theorem 1 for d <  4 and part of the lower bound for d =  4. 
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Proposition I. Assume that A and B particles are initially distributed 
over 77 d according to (1.1) with r A = rB > 0. Then for t/> 1, 

pA(t) = p~(t) >>, c x/~A/t a/4 (2.16) 

for appropriate c > 0. 

Proof. By Lemma 2.2(b), 

EI~)R(/; ~/)l ~< C2 ~ tU4R(d-1)/2 

So by Corollary 2 of Lemma 2.1, 

ElSe( t ;  r ~< C2 X~AA tl/4R(a-1)/2 

On the other hand, by Lemma 2.3, 

E[~R(O; ~)[ ~ C4 N~A Rd/2. 

Consequently, 

EI~R(t ;  ~)1/> EI~R(0; ~)1-  EI~R(t ;  4 ) -  ~R(0; ~){ 

>/C4N~AARd/2--C2N~A tX/4R(d-l)/2. (2.17) 

Now set R = a ~ f t .  For a large enough, (2.17)is at least b ~ R f  2 for 
some b > 0. By symmetry, 

pA(t) >~ �89 r ]. 

Plugging in the bound for E[7~R(t; ~)] and substituting for R, we obtain 

o A( t ) >i c ,f;  lt d/4, 

with c = b/2a a/2. | 

3. Lower Bounds for Equal Densities, d>>. 4 

In this section we will show that pA(t) decays at most like c/t, c > 0, 
for all dimensions d if r A = rB. For d~> 4, this will provide us with the 
correct lower bound. (As was shown in the previous section, for d <  4 this 
bound is not sharp.) The bound c/t is intuitive--as explained in the 
introduction, it corresponds to the mean field approximation which 
assumes that the positions of A and B particles are independent. The 
bound even goes in the "right" direction: the positions of the opposite types 
of particles should actually not be completely independent, but somewhat 
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negatively correlated. Therefore, these particles should be somewhat less 
likely to collide, and the density should fall less quickly than c/t. One can 
also come up with other heuristics. For instance, the densities pA(t), pB(t) 
should decay less rapidly than for the annihilating random walk given in 
the introduction. Here, annihilation does not always occur when particles 
meet (when they are of the same type), which should slow things down. 
Since the density of the annihilating random walk dies off at most like c/t, 
so should the density of our two-particle system. 

Unfortunately, we were unable to give a proof along these lines. Our 
indirect proof here makes use of several lemmas. Lemma 3.1 compares two 
copies of our two-particle annihilating random walk which share the same 
percolation substructure and whose initial states differ only by a single 
particle at y;  the lemma says this difference remains for all time, with the 
extra particle moving as a random walk X, y. As a consequence, at any time 
along this path, one or the other of these processes must have at least one 
particle. Roughly speaking, this says that along this path, the probability 
is ~ 1/2 that the process will have a particle. This is formulated in Lemma 3.4. 

Consider a random set d in 2a consisting of the occupied sites of 
a Poisson random measure with mean m--1/Mt .  One can assume that 
d c {x: 40 ~ 0}. View the process ~ for 0 ~< s ~< t, paying special attention 
to the evolution of "associated" random walks, one starting at each point 
of d .  One can show, as in Lemma 3.3, that the probability of these 
random walks intersecting by time t is not too large (say 1/2) if M is large. 
(One actually needs to show a bit more in the lemma.) So the density of 
these random walks (which are allowed to coalesce with each other) is at 
least 1/2Mt at time t. On the other hand, if these random walks correspond 
to paths constructed from ~ in the above heuristics for Lemmas 3.1 and 3.4, 
then the probability that such a path is occupied by at least one A or B 
particle at time t is ~ 1/2. This should imply that the density of occupied 
sites at time t, pA(t) + pB(t), is at least of order 1/4Mt, which is the type 
of result we want. Proposition 2 makes this precise. 

We need some notation for Lemma 3.1. For x E 7/a, set 

A,(x)=~, (x) if i t  ( x ) > 0 ,  

= ~ , _ ( x ) - I  if ~, ( x ) 4 0 .  (3.1) 

Note that A,(x) is left continuous. Let X{, ye7/d, be the random walk 
starting at y which moves according to level A, (Xy  ) of the percolation 
substructure ~ of 4, given in the introduction. That is, if an alarm clock 
goes off at level A,(Xy_), then Xf moves according to the corresponding 
arrow. Random walks Xf 1, Xy 2 with X~Ir  Xt y2 move independently; their 
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v . ~ y  movement is also independent of Go Also, introduce the processes ~t, 
y E Z a, where ~y evolves as does ~, according to ~ ,  but with initial measure 

~ ( x )  = ~o(X) - 1 for x = y, 

= ~o(X) for x -r y. (3.2) 

Lomma 3.7. For ~y as defined above, 

Cy(x) = r  1 for x = X{, 

= ~t(x) for x=~Xf. (3.3) 

Proof. Assume that (3.3) holds for t < T for some (possibly random) T. 
(3.3) can only be violated at t = T if at time T there is an arrow in ~ from 
X~._. If the arrow occurs on level Ar(X~. ), then X ~ r  Moreover, if 
~ T _ ( X ~ - ) >  0, then the extra B particle in ~ at X~_ moves to X~, whereas 
if dr  (X~_)~< 0, then the extra A particle in ~Y at X~ .  moves to X~. (This 
is the motivation for (3.1).) In either case, (3.3) will continue to hold at 
t =  T. If the arrow occurs on a level other than AT(X~_), then the same 
type of particle (type A, type B, or no particle), moves for both ~ and M. 
Here X~=X~_, and so (3.3) continues to hold at t =  T. Therefore, (3.3) 
cannot be violated at t = T; induction shows that (3.3) holds for all t. | 

We are also interested in the following consequence of Lemma 3.1. 

Corollary I. For ~ ~ defined as above, 

either ~ , ( X y ) r  or ~ ' (X~)4 .0  (3.4) 

for each t. That is, at least one of the two processes i t ,  ~Y has a particle 
at Xy. 

In Section 6, we will also use random walks X{ to compare processes 
and ~" sharing the same percolation substructure but beginning from 

different initial states. There, the initial states will be unequal at many sites, 
with the difference possibly being greater than one. For  ~', type A particles 
will die upon reaching certain boundaries; this will correspond to the birth 
of random walks. Despite these embellishments, the difference between 
and ~" will be governed by random walks in a manner analogous to (3.3). 

Before proceeding with additional preparation for Proposition 2, we 
pause to make a simple observation concerning two-particle annihilating 
random walks ~ and 4' with 4o ~< ~; (i.e., ~0(x) ~< ~;(x) for all x). Lemma 3.2 
is a maximum principle; it will be referred to in Sections 6 and 7. The proof 
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is similar to that of Lemma 3.1. Here, R~ t denotes the process which is 
restricted initially to De, that is, 

R~0=r 

l_emmo 3.2. Suppose r and r have the same percolation substructure 
with ~0 ~< r Then 

~ < ~ ;  for all t. (3.5) 

ProoL It suffices to show that for given R, 

R~,(x) ~< Rr for all t, x. (3.6) 

Since 

lim Rr = ~ , (x ) ,  l im R ~ ( x )  = ~ ' (x) ,  
R ~  R ~ c o  

(3.5) follows from (3.6). Suppose now that (3.6) holds for t < T for some 
(possibly random) T. At given x, R~t (or R~) only changes at t = Ti f  either 
(i) there is an arrow from x, or (ii) there is an arrow to x. It is easy to 
check that under (3.6) for t < T and (i), 

RCT(X ) ~< R~)(X). (3.7) 

Suppose that (ii) holds and denote by R~0r(x)=-1 ,  0, 1 the type of 
particle arriving at x (A-par t ic le=-1 ,  B-particle= 1, no particle=0). 
Then, 

RG(x)-  Rr = Rr ~r %~(X)-- RCT(X). (3.8) 

By our assumption (3.6) for t < T, 

So from (3.8), 

%~(x) < %)(x). 

R('r(x)-  R(r(x ) ~ R~'r ( x ) -  R(r_(x ) >~0 (3.9) 

in case (ii) as well. (3.7) and (3.9), together with an induction argument, 
show that (3.6) holds for all t, x. I 

We will require additional notation for Lemmas 3.3 and 3.4. Let (k(x), 
x e Z d, k = 1, 2, be random variables taking values 0, 1 at each site with 
P [ (k (x )=  1] = m  for some 0 < m <  1. We assume ((1, (2) is chosen to be 
independent at different sites (also, independent when conditioned on ~o- ), 
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and that ~ is independent of ~1, ~2 and 3o �9 (~#(x) will be specified before 
Lemma 3.4.) Set 

k {x #k(x)= 1}. (3.10) ~ r n  ~ �9 

For given m, d~m and d ~  should be thought of as low density random sets 
having independent coordinates and which are constructed independently 
of ~.  Introduce the processes {Y, y e 77 a, which evolve as does ~ according 
to ~,  but with initial measure 

~ ( x )  = ~o(X) + 1 for x = y, 

= ~o(X) for x # y .  (3.11) 

One can define .#y(x) and Xy analogous to A,(x) and Xy, but relative to 
{Y instead of ~. Also, introduce 

2 1 vY = inf{t : Xy = X~, z e ~ m  - -  Y, or Xy = ~" X , , z e d m -  y }. (3.12) 

(dkm -- y denotes k d , ,  c~ {y}C.) Up until time rY, the random walk X y does 
not meet any of the random walks X~, -~t- Note that zY is independent of 
the event {yedkm}. 

Lemma 3.3 says that if the density of random walks is small enough, 
then the probability they do not hit by a given time is large. 

Lemma 3.3. Pit < ~Y;y e d # ]  ~> m[1 + 2e2(t + 1)log(1 - m ) ] . I n  
particular, for m ~< 1/32(t + 1), 

P [ t<~Y;  ye~C2m] >~m/2. (3.13) 

ProoL Clearly, 

2 P[rY~< t] ~<~ P[X y=X~, s o m e s e  (0, t ] ; z e ~ C m -  Y] 
z 

+ ~ P [ X f  = X~~', some s m (0, t]; z e ~r - y] .  (3.14) 
z 

We estimate the first sum; the same reasoning pertains to the second. It will 
be helpful to introduce the random walks Y~, z e 7] a, with Y~ = z, which 
move independently of each other (even when their positions coincide). 
The first sum in (3.14) equals 

~ p [  Y -  , [ O , t ] ; z e d 2 _ y ]  Ys - Ys, some s e 
z 

D] + 1 
<~ ~ Y',P[ Y -Ys ,  s o m e s ~ ( k - l , k ] ; z e ~ 2 m  y] .  (3.15) 1~s - -  

k = l  z 
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The probability that a rate-2 random walk does not move in one unit of 
time is e 2. So by the strong Markov property, (3.15) is at most 

[ t ]  + 1 I t ]  + 1 

e2 Z Z P [ Y ~ = Y T , ; z e ~ - Y ]  =e2 Z E [ # z e d 2 - Y : Y ~ = Y ; ]  " 
k--I  z k--1 

(3.16) 

The set { Y~, z e ag2m - y } is dominated by a Poisson random measure with 
mean - l o g ( 1 - m ) ;  the same is thus true for all k. So (3.16) is at most 

- e 2 ( t  + 1) log(1 - m). (3.17) 

It follows from (3.15) (3.17) that the first sum in (3.14) is at most 
- e 2 ( t + l ) l o g ( 1 - m ) ;  applying the same reasoning to the second sum 
gives 

P[~Y ~< t] ~< -2e2(t  + 1) log( i - -m) .  (3.18) 

Consequently, 

P [ t < r Y ;  y e ~ r  =P[ t<~ y] P [ y e d ~ ]  

>/m[1 + 2e2(t + 1) log(1 - m ) ] .  

For m ~ 1/32(t + 1), this is at least m/2. | 

We recall that under (1.1), ~ o(X)= ~ Z (x ) -~ l ( x ) ,  where Cl(x) and 
~2(x) are independent Poisson random variables with means rA and re 
with rA=rB.  Extend our space (~, ~ ,  P) to include uniform [0, 11 
random variables V x, x e Z a, which are independent of everything else. Set 

~ k - = { x : ~ l ( x ) = [ r B ] - l - k } ,  k =  1,2. 

The reason for this definition of ar k will become clear in Lemma 3.4. 
(.sO k could be defined in a variety of ways.) Fix m > 0 with rn <~ P [ x e  ~,2] 

k (m<~P[xE~g r follows). One can of course choose a m so that for 
k _ {x: VX k k _ d k  k Nm = <<.am} and d m raN' m, 

P [ x  ~ ag~] = m. 

Note that ~k  m serves to "thin out" d k. It is easy to check that ~r and the 
corresponding random variables ffk(x) have the properties specified just 
before (3.10). One can of course choose m ~< 1/32(t + 1) so (3.13) holds. 

We introduce EYm(t), where 

Y - -  {(2) ~ "C y ,  E m ( t  ) -- " t  ye~:J2m}.  ( 3 . 1 9 )  
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When convenient, we will drop indices. We also introduce the map 
TY: f2--, t-2, with TY(co)=co' sharing the same percolation substructure 
as co, but with 

~ I ( x  ' COt) = ~ I ( x  ' 0.)) for all x, 

~2(x, co')= [~2(x, co)-  1] v 0 if x =  y, (3.20) 

= ~ 2 ( x ,  co) if x # y ,  

and 

VX(co')=(rB/([re] +2))  VX(co) if x = y ,  

= VX(co) if x # y .  (3.21) 

For y E d 2, one has 

~o(x, co') = ~o(X, co)-  1 if x = y, 

= ~o(X, co) if x # y. (3.22) 

t y So under y e d  2, ~,(x, co ) = ~ ,  (x, co) for all t. The point of (3.21) is the 
following simple lemma. 

Lernmo 3.4. Assume initial data as in (1.1). For G z ~ ,  

P[ TY(G n EY(t))] = PIG c~ EL(t)].  

Proof. T y alters just ~ 2(y) and VL Since the initial state at y is independent 
of ~ and the initial state at x # y ,  

PETY(Gc~E)] rB p[~2(y) = Ere] + 13 
PEGc~E] - [ r e ] + 2 e [ ~ 2 ( y ) = [ r e ] + 2 ]  ' (3.23) 

where the first term on the right comes from (3.21), V y being uniformly 
distributed. Since ~2(y) iS Poisson distributed with mean re, the second 
term equals ([re]  +2)/re .  The two terms on the right therefore give 1 
when multiplied. | 

It is also easy to check that 

T Y ( { y e s r  = {y e d~m}. (3.24) 

For y ~ d l m  (SO ~2(Y, co,)= ~2(y, CO)__ 1), 

2((co') = X((co). (3.25) 

The corollary to Lemma 3.1 can therefore be reworded as saying that 

~(x,~(co),  co) ~y , = 0 ~ ~,(X, (co), co') # 0 (3.26) 
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for all t and y ~ d  1. It also follows from Lemma 3.1 that for x ~ y ,  

~'~(co') = ~-~(co) (3.27) 

if Xx(co) :~ XY(co) for all s ~ [0, t] (since then ~s(X',~~ (co), co) = ~s(X~ (co) , - x  co,)). 
We combine Lemmas 3.1, 3.3, 3.4 to show Proposition 2, which gives 

a lower bound on the limiting behavior of pA(t) under equal initial 
densities. The result complements Proposition 1, and supplies the lower 
bound in Theorem 1 for d >  4 and part of the lower bound for d =  4. 

Proposition 2. Assume that A and B particles are initially distributed 
over 77 a according to (1.1) with rA = re > 0. Then for large enough t, 

pA(t) = p~(t) >1 c/t, (3.28) 

where c > 0 does not depend on ra or d. 

ProoL For any set G ~ ~ ,  

PIE] = P [ E n  G] + P[Ec~ G c] 

= P [ T ~  G)] + P [ E c ~ G  C] 

according to Lemma 3.4, with y = 0 .  Let G =  {co: r176 Also, set 
m =  (1/32(t + 1))/x P[0 ~.;g2]. By Lemma 3.3, 

PIE] >1 1/64(t + 1) 

for large enough t. So either 

P[EnGC]>~l/128( t+l)  or P[T~ (3.29) 

(3.28) will follow once we show that 

PEco: ~,(0) r  PEEr  G c] (3.30a) 

and 

P[co: 4,(0) 403  >~ P[T~  G)]. (3.30b) 

The reasoning for (3.30a) is as follows. Of course, 

Pro): ~,(0) 4 = 0) ]  

~>P[3! y e d ~ :  x,~ = o; ~,(o)#o] 

= ~ p[ySd2m;X,~=~Xj, z e d 2 m - Y ; X Y = O , r 1 6 2  ] (3.31) 
y ~ 77d 
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by restricting the set. Note that the uniqueness condition "3 !" is needed to 
obtain this decomposition. The process ~ is translation invariant, and so 
the last quantity in (3.31) equals 

P [0  r 2 o , 2 Win;X, # X , , Z e W , , - - O ; X  ~ - -y ;  ~ , ( - - y ) # 0 ]  
y E ~  d 

= P[OE d ~ ;  X~ X;, ze  d~--O; ~,(X~ # O]. (3.32) 

But it is easy to see that 

P[0 ~ ~ ;  x ~ ~ x ; ,  z e ~,~,, - 0; ~,(x~ ) ~ 03 

> P[0 + ~m; t<~~ ~,(X~ # 0] 

= P[Ec~ G~]. (3.33) 

(3.31)-(3.33) imply (3.30a). 
The reasoning for (3.30b) follows in much the same manner. We have 

P[o)': ~,(0) # 0] ~> P[3 ! y ~ d ~ :  .Y~ = 0; ~,(0) ~ 0] (3.34) 

by restricting the set. As in (3.31)-(3.32), this equals 

P[OeW'm;2~ ~d~,,-O; ~,(2~ 

By inclusion, this is at least 

P [ 0 e  1 . - 0  dlm__O,s~ W , , , , Y s r  [0, t]; ~,(2~ = 0}]. (3.35) 

On account of (3.24)-(3.27), (3.35) is at least 

~z e d J m _ 0 ,  [0, t ] ; ~ , ( X ~  (3.36) e[ r~ ~C~m; X~ ~ Xs, z S t  

(To see this, plug in the corresponding terms. The substitution of 
T~176  for { ~ , ( Z ~  uses (3.26) and thus the corollary of 
Lemma 3.1; it is responsible for the inequality.) This is at least 

P[T~ t < v ~  ~,(X~ =PET~ (3.37) 

(3.34)-(3.37) imply (3.30b). This completes the proof. II 

4. Upper Bounds for Equa/ Densities 

In this section we will show that if r A = rB, then pA(t) decays at least 
like C,,/-~A/t d/4 for d < 4 ,  C/t for d > 4 ,  and C(X~A V 1)/t for d = 4 .  This 
result, Proposition 3, together with the lower bounds given by Propositions 1 
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and 2 of the previous two sections, demonstrates Theorem 1. To prepare 
for Proposition 3, we present a series of six lemmas. Lemmas 4.1 and 4.2 
are elementary. Lemma 4.1 states that pairs of particles starting a given 
distance apart hit at least with a certain probability by an appropriate 
elapsed time. By Lemma 4.2, the total number of particles present will 
therefore decay at least at a certain rate if both types of particles are 
present in the same cube DR in large enough numbers. For this procedure 

to be efficient, we will need R ~ ~ in general. So although there will be 
plenty of particles of both types in D j7 ,  we still need a stirring mechanism 
to distribute the particles evenly in smaller regions. This is given in 
Lemmas 4.3-4.5. (Lemma 4.3 is a simple large deviations estimate which 
will also be used later.) Lemma 4.6 then uses the previous lemmas to show 
that the number of particles will continue to decay rapidly as long as there 
are substantial numbers of both types of particles in D,/7. But from the 
first two lemmas of Section 2, 1~3,/7(t; 4)1, the net difference in the 
numbers of the two types of particles, is comparatively small. The number 
of particles will therefore continue to decay until the total number of 
particles left in D /7  is small; this is the conclusion in Proposition 3. 

For Lemma 4.1, we introduce the following notation. Let 2yx denote 
a rate-2 random walk starting at x, and set 

r =inf{s:  2YsX = 0 }. (4.1) 

The norm Ilxll is chosen so x e DR iff IIx[I ~ R. We are interested in obtaining 
lower bounds for 

Hs(x ) = P i t  < s]. (4.2) 

This can be conveniently expressed in terms of the Green's function 

G , ( x )  = ~ P[  Y, =03 ds. (4.3) 

The lemma is from ref. 12. 

Lemma 4.1. If x ~ 7/d with IIxll = R, then for appropriate cl > 0 (depending 
on  d) ,  

HR2(x) >~ c1, d =  1, 

>/cfflog R, d =  2, 

~ c I R  2-a, d>~3. 

Proof. 
desired) follows from the inequality 

(4.4) 

d =  1 follows from the central limit theorem, d>~ 2 (and d =  1, if 

Hi(x) >1 Gt(x)/Gt(O) 
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together with the following well-known asymptotics 
Ilxll--' ~ ,  

GR2(x) ,,~ ~2 d = 2, 

,,~ o~ a R 2 a d~>3; 

GR2(0) ~ f12 log R d = 2, 

~ fla d>~ 3. 
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for G: as R =  

The local central limit theorem gives these asymptotics. (See 
Spitzer(14~). | 

We will use the following notation. Let ~ ( t )  ( ~ ( t ) )  denote the 
number of A particles (B particles) in the cube DR for the process ~,. Set 

~ ( t )  = ~ ( t )  A ~(t ) ,  

~ ( t )  = ~ ( t )  v ~)~(t), (4.5) 

~ f ( t )  = ~ ( t )  + ~ ( t )  = ~7(t)  + ~ f ( t ) .  

Recall that 

Also, set 

h d ( R )  = m i n { H g 2 ( X ) :  /IxJI ~< R}. (4.6) 

Assume that ~ has translation invariant initial data. Then 

E[~Rr(0)] - E[~Rr(R2)] ~> h a ( R )  E [ ~ ( 0 ) ] .  (4.7) 

Lemma 4.2. 

P r o o L  Enumerate by Xl, x 2 . . . . .  x n the positions of the particles of 
minority type at time 0 in DR, and by z 1, z2,..., ZN, N>~n,  the positions of 
particles of majority type. Let X, ~ and Z~ k denote the random walks 
executed by these particles for the process t /without interactions. Until the 

m M time ~k ( rk)  at which the particle starting at Xk (Zk) in r is annihilated, the 
particle moves according to X xk (ZZ~). No matter what our choice of xk and 
2'k~ 

(4.8) xk zk R 2  P [ X  s = Z  s ,  somes~< 10%]/>ha(R ) . 

(Recall that ~0 gives the initial configuration.) Denote by a k the time at 
which these two random walks first meet. 

The bound (4.7) is obtained by pairing up the particles starting at x k 

822/62/1-2-21 
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m M then both  particles d isappear  at t ime ak and zk, k<~n. If  a k = V k  =V k , 
Otherwise, at least one of the particles has already disappeared by ak. So by 
(4.8), the probabi l i ty  that  one or the other  of these particles has d isappeared 
by time R E is at least hd(R). Therefore, 

E[ # k  <~n: z"~ A z~t <~R 2] >>-ha(R) E [ ~ ( 0 ) ] .  (4.9) 

Since we are assuming ~0 is t ranslat ion invariant,  this implies (4.7). | 

L e m m a  4.3 is a simple but  useful large deviations estimate. 

Lemma 4.3. Let X~ ..... X n be independent  r a n d o m  variables with 
P[X# = 1 ] = Pk, P[Xk = 0] = 1 - Pk, and Z ~  - 1 Pk = m. Set Sn = Y~ = 1 Xk. 
For  appropr ia te  fl > 0 ( independent  of Pk), 

p [ S n _ m < _ 6 m ] , P [ S _ m > ~ 6 m ] < ~  e fl~(~ A 1 )m (4.10) 

for each & > 0. 

E[e ~ = (1 -- pk)e Opk + pkeO0 Pk) Proof. 
So, 

E[eO(S, m ) ] =  f i  [(1--pk)e  Opk+ pkeO(1 Pk)]. 
k = l  

By Chebyshev 's  inequality for 0 > 0, 

p [ S n _ m ) 6 m ] ~ e - a O m  f i  [ ( l _ p k ) e  OPk_t_pkeO(1 Pk)]. (4.11) 
k = l  

For  0 small, simple es t imat ion shows that  the quantit ies in brackets  at the 
right are at most  1 + 0 2 Pk. So, the sum of their logar i thms is at mos t  

0 2 ~ pk=O 2m. 
k = l  

The left side of (4.11) is therefore at mos t  e x p { - O m ( 6 - O ) } .  
0 = (6 A 00)/2, appropr ia te  0 < 0o ~< 1, we therefore get 

P[ Sn - m >~ 6m ] <~ e -a(~ ̂  Oo)m/4 ~ e - ~(a A 1)m, 

For  

where fl = 00/4. By considering instead e-0(Xk-Pk), one can reason as above 
to get 

P[S, , -m<~ --(~m]<~e -#o(aA1)m | 
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Corollary 1. Let X1 ..... Xn be i.i.d, random variables with P[ X 1 = 1 ] = p, 
P [ X I = O ]  = 1 - p .  Set S , = Y ~ _  1Xk. Then for f l > 0  as above, 

P [ S n < . ( 1 - 3 ) n p ] , P [ S n > ~ ( l + 3 ) n p ] < . e  -~6(6A1)np (4.12) 

In Lemma 4.4, we will consider cubes DR and Dr.j, j e J ,  where r 
divides R and {Dr.j, j s J  } partitions DR into smaller cubes; r is to be 
thought of as being much smaller than R. Set q = (r/R) a. The lemma says 
that if ~ ( 0 )  >~ L, then one can give the lower bounds ~3rmj(s; q) >~/3~qL for 
appropriate s. (A little thought shows that one cannot expect more.) Recall 
that q is the system corresponding to ~ whose particles do not interact. 

Lemmo 4.4. Suppose that ~3~(0) ~> L. Then for appropriate /31> 0 (not 
depending on r or R), 

P[~3r~,+(s; r/)~> fllqL ] >~ 1 - e  -p~qc (4.13) 

for all s~ [R2/2, R 2] and all j e J .  

ProoL It is not difficult to show by using the local central limit theorem 
that for the random walk Ys ~, and all x, y ~ DR and s E [R2/2, R2], 

P[  Y2 = y]/>/3~/R" 

for appropriate/32 > 0. Consequently, 

P[ Y] e Dr,./] ) fi2q (4.14) 

for all j e J .  (As we have warned in the beginning of Section 2, we are 
cheating here in retaining the constant/32 by pretending that all cubes Dr, J 
contain the same number of lattice points.) Introduce i.i.d. Bernoulli 
random variables X 1 . . . . .  X L with P [ X I = I ] = f l 2  q and P [ X I = 0 ] =  
1-fl2q. Let SL Z L Xk. On account of (4.14), k = l  

P[~Aj(s ;  t/) ~< fl2qL/2] <~ P[SL <. fl2qL/2], (4.15) 

since there are at least L type-A particles starting in D e. By Lemma 4.3, 
this is at most e-~tqL/2 for appropriate/31 > 0. Similarly, 

p B [~)~.j(s; ~/) ~< fl2qL/2] <~ e - ~ q t / 2 .  (4.16) 

For/31 ~</32/2, these bounds imply (4.13). | 

m Corollary 7. Suppose that E[~)R(0)]~-LI,  where L~>lcz/q for 
appropriate c2 > 0 (not depending on r or R). Then 

E m [~r,j(S; q)] )/~1qL1/4 (4.17) 

for all se  [R2/2, R 2] and jEJ .  
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Proof. By Lemma 4.4, if ~3~(0) ~> L, 

P [ ~ j ( s ;  tl)>~fllqL] >~ 1 - e  fllqL 

for all s ~ [R2/2, R 2] and j e J .  For L = c2/2 q and large enough c2, this is 
at least 1/2. So the analog of (4.17) holds with fllqL1/4 replaced by ~lqL/2 
if ~ ( 0 )  t> L. Discounting the contribution of ~ ( 0 )  < L, it is easy to check 
that under E [ ~ ( 0 ) ]  ~> L1, 

E[~rmj(s; r/)] ) fll qL1/2 - ~1c2/4 >~ fll qL1/4. | 

By comparing ~ with t/, one can now show that one of the following 
two alternatives must hold: either all cubes Dr, j contain (on the average) 
substantial numbers of both A and B particles at appropriate times s, or 
the total number of particles in DR must decrease substantially by time R 2. 

Lemma 4.5. Suppose that ~o is translation invariant with E [ ~ ( 0 ) ]  ~> LI, 
where L 1 >~ c2/q for appropriate c2 > 0. Then either 

E[~rmj(s; ~)] >~/31 qLl/8 (4.18) 

for all se  [R2/2, R 2] and j ~ J ,  or 

E[~)r (0)]  - E [ ~ ( R 2 ;  ~)] >~ filL1/8. (4.19) 

Proof. Suppose the first alternative fails at some s ~ [R2/2, R2]. Then by 
the above corollary, 

E[~rm, j(s; r/)-] -- E[~)rmj(s; ~)] >1 fll qL1/8. (4.20) 

By the translation invariance of r and hence of ~,, if (4.20) holds for one 
j, then it holds for all j. Since Cs c t/s , 

E [ ~ j ( s ;  t/)]/> E [ ~ j ( s ;  ~)] (4.21) 

as well. So by (4.20) and (4.21), 

E[7~rj(s ; ~/)] - E[7~F.j(s ; ~)] ~>/~ qL~/8. (4.22) 

Summing over j gives 

E[~Rr(s; q)] -- E[~)Rr(s; ~)]/> fl~L1/8. (4.23) 

On the other hand, 

E [ ~ ( ~ ;  ~)] = E [ ~ ( O ) ]  
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by the translation invariance of r/o, and 

for s ~< R ~ by the translation invariance of ~o and the decreasing density of 
~ .  Plugging these into (4.23) gives 

We now set 

R , =  x ~ l t  (4.24) 

and 

rt = 32 /1 /4 ,  d <  4, 

= (6~t) 1/d , d>~4, (4.25) 

where 6~, 62>0 and will be chosen later. We can assume that 61, 62 are 
chosen so r~ divides R,. Combining Lemmas 4.2 and 4.5, we show in 
Lemma 4.6 that if E [ ~ , ( 0 ) ]  is not too small, then the total number of 
particles lost in DR, over the time interval [0, R~] must also be of this 
order of magnitude. R 2 and r~ stand for (R,) 2 and (rt) 2. 

lemma 4.6. Suppose that r is translation invariant with E [ ~ , ( 0 ) ]  >/L~, 
where L~ >i c2/q for appropriate c2 >0.  Then for appropriate fi3 > 0 (not 
depending on 61, 62) and large enough t, 

E[~3 ~,(0)] - E [ ~ , ( R 2 ) ]  t> fl3L~. (4.26) 

ProoL Since ~o is translation invariant, (~ is translation invariant for all s. 
So by Lemma 4.2, 

E[7~,j(s)]-E[~, ,(s+rZ,)]>ha(r,)E[75r~,j(s)]  (4.27) 

for all s and j ~ J .  It follows from (4.27) and Lemma 4.5 that either (4.26) 
holds or 

E[ ~ r~,j(s) ] >I- fl,qL1/8 (4.28) 

for all s t  [R2/2, R~] and j e J .  Assume (4.28). Then the right side of (4.27) 
is at least 

fll qLl ha(r,)~8. (4.29) 
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2 it follows from Letting SkE [R~/2, R 2, - r ~ ]  run through multiples of r t, 
(4.27) and (4.29) that 

T 2 2 2 E[~r, . j (R,  )] >~ fli qLl R, ha(r,)/16r,. 

Summing over j, this gives 

E[-~3 ~,(0)] r 2 Rthd(r~)/16,,. (4.30) _ E [ ~ & ( R t ) ] ~ f l l t  I 2 ~2 

On the other hand, by Lemma 4.1 and (4.6), 

2 2 2 2 R t hd(r,)/r t >~ clRt /r  , , d= 1, 
2 2 >~ClR,/r, l o g r ,  d = 2 ,  (4.31) 

2 d ~- C 1R,/rt, d>~ 3. 

Plugging in R, and r, as specified in (4.24) and (4.25), it is easy to check 
that the right side of (4.31) is Cl for d~>4 and at least Cl for d < 4  and large 
enough t. ((4.24) and (4.25) are also used in the proof of Proposition 3.) 
(4.26) therefore follows from (4.30)-(4.31) with//3 =/~1cl/16. | 

One can reason as in Lemma 4.6, but instead, after (4.31) plug in other 
choices of R, and r~. Using the bounds thus obtained, one can compute 
better bounds on E[~3~,(s)] than needed here; these will be useful in 
analyzing the spatial configurations of ~, for large t (Bramson and 
Lebowitz(15)). 

We are now in a position to demonstrate the main result of the section, 
Proposition 3, which gives upper bounds for pA(t) in all dimensions. The 
proposition relies on Lemma 4.6 and two results from Section 2, Corollary 2 
of Lemma 2.1 and Lemma 2.2. 

Proposition 3. Assume that A and B particles are initially distributed 
over 2U according to (1.1) with r~ = r8 > 0. Then 

pA(t)=ps(t)<~ Cxf~A/t d/a, d < 4 ,  

<~ C ( ~ A  v 1)It, d =  4, (4.32) 

<~ C/t, d > 4 ,  

for appropriate C and large enough t. 

Proof. Subdivide the interval I-t, 2t] into nonoverlapping subintervals of 
length 61t. (Choose ~51 so 1/61 is integral.) Set sk= (1 +6~k)t  for k =  1 ..... 
1/61, and set Ik=[Sk_l,Sk']. For R~=x/~l t ,  Sk=Sk I + R  2. Note also 
that C sk-~ is translation invariant. Assume for the moment that 

E[~3~,(sk_ ~)] >~L~ (4.33) 
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for each k and some L 1 >~ c2/q (with rt chosen as in (4.25)). It then follows 
from Lemma 4.6 that for large t, 

E [ - ~  (s#_ 1)] -- E[~Tt(Sk)] >/fl3L1, (4.34) 

for k = 1,..., 1/61; /~3 does not depend on 61. Summing over k, (4.34) gives 

E[~3r (t)] - E l -~ r  (2t)] ~> fl3L1/c~l. (4.35) 

On the other hand, by Corollary 1 of Lernma 2.1 and Lemma 2.2(a), 

E[I~)R,(s)[ ] ~< C1 x~A (Rt) a/2 (4.36) 

for all s and appropriate C1. Since 

E[~)T (S)] = 2E[~3~,(s)] + E[ ]~R,(s)l ], (4.37) 

(4.36) means that 

E [ ~ , ( s ) ]  > 3CI ~ (R,) d/2 ~E[1~ , (s ) ]  < 3E[!~,(s)].  (4.38) 

We will show that for appropriate choice of LI, 61, 62, (4.35) will be 
impossible--that is, the drop in E[~3~,(s)] cannot be as rapid as indicated 
by (4.35). So the assumption (4.33) must be wrong for at least one s~_l. 
This will say that E[~,(sk  1)] is small relative to E[~3~,(t)]. On account 
of (4.38), E[~3T (s~_l)], and hence E [ ~ , ( 2 t ) ] ,  is also small relative to 
E[~'~,(sk i)]. So the value of large E [ ~ , ( t ) ]  drops quickly between 
times t and 2t. One can investigate what "large" means in this context. 
Division by the volume of DR, will then give (4.32). 

Choose 61 </~3/12. We first note that if (4.33) holds with 

LI -= E [ ~ R  ~, (t)]/12 ~> c2/q, (4.39) 

then by (4.35), 

E[1~,( t ) ]  - E[I~T (2t)] ~>/~3 LI/(~ i > E [ ~ T R t ( t ) l  . 

This is clearly not possible. So (if L1 >~ c2/q), (4.33) must be violated with 

E[~'~,(sk 1)] <E[~rR,(t)]/12 (4.40) 

for some sk_l ~ [t, 2t]. Since E[~)~,(s)] is decreasing in s, one can apply 
(4.38) to conclude that 

E [ ~ r , ( 2 t ) ]  <~E[~,(sk 1)] < 3E[~3~,(sk_l)] <E[~,(t)]/4,  (4.41) 
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as long as the left side of (4.38) and L1 >>-c2/q hold. We will iterate (4.41) 
after investigating (4.38) and L1/> c2/q. Note that one can modify 61 and 
L1 so that the quotient 4 in (4.41) can be replaced by any desired value. 

Plugging in the definitions of L~ and q gives 

12c2 E[~3r (t)] ~ > - - ~ >  12C2(01) d/2 ld/4/(g)2)d , d< 4, 
q 

12C2((~1)d/2--1 ta/2 1, d>~4. (4.42) 

On the other hand, the left side of (4.38) can be rewritten as (with s = t) 

E[~Rr (t)] > 3C~ ~ (61t) a/4. (4.43) 

Choose 3 2 SO that 

62 > (61 )1/4 (4c2/C1 X~AA)1/d 

and r, divides R,. The right side of (4.43) is then greater than the right side 
of (4.42) in d <  4. (4.42) will dominate (4.43) in d >  4 for large t; in d =  4, 
they are of comparable size. So (4.41) will hold for large t as long as 

E[fb~,(t)]>>.3Clx~A(alt)  a/g, d < 4 ,  

>~ (3C1 X~A V 12C2)6~ t, d =  4, (4.44) 

>~ 12c2(~1t) a/2-1, d > 4 .  

(4.44) can be rephrased as 

E[f?~,(t)] ~A/2ta/4 ' 4, 
pA(t) 2(61t)a/2 >~ C d< 

~> C(x/~A v 1)/2t, d = 4 ,  (4.45) 

>1 C/2t, d> 4, 

where C=3C1((~1)  -d/4 in d < 4 ,  C =  12c2(61) -1 in d > 4 ,  and C is chosen 
correspondingly in d =  4. Also, (4.41) can be rephrased as 

p A(2t) < p.dt)/4. (4.46) 

Denote by fa(t) the right side of (4.45). For all t, 

fa(2t)/fa(t) >~ 1/2. 

Along the sequence t = 2", n ~> n o, large enough no, it therefore follows from 
(4.46) that 

pA(2t)/fd(Zt ) < �89 ) (4.47) 
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as long as pA(t)/fa(t)>>, 1. This ratio therefore falls as n increases until 
pA(2n)/fd(2 ") < 1. Since pA(t) is decreasing, pA(t)/fa(t) < 2 for t e (2 n, 2 n+ 1]. 
Extending this reasoning, it is clear that pA(t)/fa(t) < 2 for large enough t, 
which demonstrates (4.32). | 

5. Lowor Bounds for Unequal Donsitios 

In this section and the next, we investigate the rate at which pA(t) 
decays for rA < rB. The techniques used here are different than for the case 
rA = rB, which was covered in the previous sections. On the one hand, for 
rA<rB, it is easy to show as in Lemma 5.1 and its corollaries that 
p~(t) --* b - r B -  rA > 0 as t ~ oe. Surviving type-A particles are therefore 
eventually in an environment consisting almost solely of type-B particles 
with density approximately b. Since these B particles should be distributed 
more or less independently, the problem should reduce to the simpler 
problem of the probability of a particle executing a random walk while 
avoiding all other random walks up to a given time. As suggested by 
(1.19), one might expect pA(t) to decay exponentially (even though the 
exponent given by (1.20) is in fact wrong in low dimensions). On the other 
hand, it is this rapid decay of pA(t) that causes additional difficulties. One 
has to worry about a set of small probability when considering the survival 
of an A particle up to time s < t. Conditioned on this unlikely event, the 
configuration of nearby B particles (or other A particles) could be sharply 
different than one might expect, enough so to disrupt the above reasoning 
up to time t. To show that this does not take place, one has to obtain 
precise estimates. 

Here, we demonstrate Proposition 4, which gives lower bounds for 
pA(t). We will need several lemmas. Lemma 5.1 gives simple bounds on the 
probability that, in a large cube DR, the number of A particles or B 
particles in the noninteracting process r/ differs by more than a given 
fraction from its expected value; this probability is exponentially small. The 
lemma will be used in Section 6 as well to derive estimates on 4. Lemmas 5.2 
and 5.3 justify some of the intuition used above, by showing in an 
appropriate sense that for large s, the configuration of B particles is 
dominated by a Poisson random measure with density just slightly greater 
than b. This is done in two steps: first, that over a suitably large cube the 
number of B particles at time s will be less than that of the Poisson 
measure, and then, that this implies that processes starting from these 
configurations can be coupled so that after an additional amount of time, 
the configuration of B particles is dominated by the corresponding Poisson 
measure. Lemma 5.4 gives an upper bound on the number of B particles 
met by a typical A particle up to a given time for the process t/, given 
appropriate initial densities. 
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Using these lemmas and a randomization trick, the proof of Proposi- 
tion 4 is not difficult. We wish to show that pA(t) decays at most exponen- 
tially with parameter ~ -  in d = 1, t/log t in d = 2, and t in d ~> 3. We also 
wish to show that this rate is proportional to b, except in d =  1, where the 
rate involves a different term. (Without this sharpening of the result, the 
proof is almost trivial in d>~ 3: one can condition on an A particle not 
moving and then compute the probability that no B particle ever hits that 
site. An extension of this reasoning which allows an A particle to move 
around in a cube of appropriate size also works in d = 1, 2, cf. ref. 7.) The 
argument in Proposition 4 consists of taking a typical A particle for the 
process t /and using Lemma 5.4 to compute an upper bound on the number 
of B particles starting from ~o and on the number of B particles starting 
from ~s/2, for some appropriate s, that the A particle hits by time t. The 
first set of B particles is used over times [0, s], and the second over (s, t]. 
Since the density of B particles does not decrease over each of these intervals 
in the comparison, Lemma 5.4 of course only furnishes us with an upper 
bound. We can plug the densities provided by Lemma 5.3 into Lemma 5.4 
to obtain concrete estimates. The final step involves the realization that we 
could have doubled the densities of the Poisson random measures dominating 
the positions of B particles at times 0 and s/2. At each point where a B particle 
hits our selected A particle, one could then discard this B particle with 
probability 1/2 as being "bogus," that is, coming from the augmented but not 
the original measures. (This is the reason we need the comparison measure 
to be Poisson in Lemma 5.3.) The probability that an A particle (in ~) is not 
actually hit by a real B particle (and therefore does not disappear) is therefore 
decreasing not faster than geometrically in the total number (real and bogus) 
o r b  particles hit by time t. This gives us Proposition 4 for d>~ 2. In d =  1, the 
event that the number of A particles initially exceeds the number of B 
particles in spots will be the major contribution to the probability of survival 
of A particles if r A is close enough to r e. This probability is computed in 
Lemma 5.5. Together with the above estimate, this gives Proposition 4 in 
d = 1 as well. 

Lemma 5.1 and its corollaries are elementary observations. Below, 
mA(R ) and m s ( R )  denote the mean number of A and B particles in DR at 
time 0-- .  

l_emma 5. 1. Assume that A and B particles are initially distributed over 7/d 
according to a homogeneous Poisson measure as in (1.1). Then 

I ] P ~R(t '  ~)"~2 ( rnB(R)- -mA(R))  ' 

24m~(R) j" 
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Proof. Using Lemma 2.1 and the convexity of exp{0x}, we compare the 
processes ~ and q as follows: 

E[exp{  O[7~R(t; 4) -- (me(R)  -- mA(R) ) l } ] 

<<. E[exp{  O[~)R(t; ~1) -- (me(R) -- mA(R))] } ]. 

Since particles do not interact for the r/ process, the initial measures are 
invariant for r/. Since the initial measures are also independent, a simple 
computation shows the right side equals 

exp{me(R) (e  ~  exp{mA(R)(e  o + 0 _ 1 ) } .  

So Chebyshev's inequality shows that for 0 > 0, 

P [ ~ e ( t ;  4) - (me(R)  - mA(R))  >t �89 -- mA(R))]  

<<. exp{mB(R)e  ~ + mA(R)e  -~  

-- 3 ( m e ( R ) -  mA(R))O -- (me(R)  + mA(R)) }. 

For 

1 me(R)  - mA(R) 
0=--  

2 me(R  ) + mA(R )' 

a little estimation by expanding up to the second term in the Taylor series 
shows this is 

1 ( m e ( R ) -  mA(R)) 2) 

By reasoning as above but with e x p { -  Ox} instead, one obtains the same 
expression for 

P [ ~ , ( t ;  4) - (me(R)  - mA(R))  <<. --�89 -- mA(R))]  

after expanding e ~ The bound (5.1) therefore holds again. | 

Corollary I. Assume initial conditions as in Lemma 5.1 with rA < re. 
Then 

pA(t)-~ O, pB(t)--* p s ( O ) -  pA(O) as t ~ oo. (5.2) 

Proof. Since pB( t ) - -pA( t )  is constant in t, the first limit implies the 
second. Suppose now that pA(t)~> 6 > 0 for all t. On account of the first 
inequality of Lemma 5.1, if R is chosen large enough, then with probability 
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at least 6/2 the cube DR contains both A and B particles at time t. Since 
with some probability qR at least one pair of these particles will hit by time 
t + l ,  

pA(t) - p~(t + 1) ~> 6qR/2R d. (5.3) 

Repeatedly applying (5.3) gives a contradiction. | 

Note that one can also show (5.2) in the same basic way by using the 
ergodic theorem instead of Lemma 5.1. Also, rates at which pA(t) -~ 0 are 
obtained in Section 6 by examining the structure of particle configurations 
in appropriate DR. Using the above lemma and corollary, we see that: 

Assume initial conditions as in Lemma 5.1 with rA < re. As C o r o l l a r y  2. 

t, R --, oo , 

P r o o f .  

P[ - :~ ( t ;  4) >~ 2(mB(R) -- mA(R))]  ~ O. 

Since 8 A 

P [ ~ ( t ;  4) ~> 2(me(R)--mA(R))]  

<~ P [ ~ R ( t ;  4) >1 ~(me(R)  -- mA(R))] 

+ P [ - ~ ( t ;  4) ~> � 8 9  mA(R))] .  

(5.4) 

(5.5) 

The first term on the right ~ 0  independently of t as R ~ ~ by Lemma 5.1. 
The second term ~ 0  independently of R as t--* ~ by Corollary 1 and 
Markov's inequality. | 

In Lemma 5.3, we will need to show that an appropriate Poisson 
measure dominates a measure, the location of whose particles is not 
completely prescribed. For this, we will use Lemma 5.2, which says that if 
a particle in Z a is surrounded on all 2d sides by other particles not too far 
away, then the random walk executed by this particle may be coupled with 
the random walks executed by the other particles so that after a large 
enough (deterministic) time to, this particle is always at a site occupied by 
at least one of the other particles. (The result is given by Theorem 6 in 
Bramson and Griffeath(16)). To be more precise, introduce the following 
notation. Let 

I =  { i  = ( i l  ..... ia) with ik = +1 }. 

Denote by D~, i s / ,  the cube 

(5.6) 

D~R = DR + Ri. (5.7) 
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yr, I 
As usual, we let Yt denote independent random walks with Yg"~= y~'( yy0 
will be another random walk which we wish to couple to the other random 
walks. 

l_omma 5.2. Assume that y~ ~ D R and y~'t ~ Di e for all i e I, 1~</~<4. 
Then yyO can be coupled to (YY"~; ieI ,  1~</~<4) so that for t>~C~R 2, 
some appropriate C~ > 0, 

yyO Yt fo r some i ~ I , I ~ { 1 , 2 , 3 , 4 }  (5.8) 

on a set of probability 1. 

For  Lemma 5.3, we use DR, j, j e JM,  to denote the disjoint translates 
of DR which cover DM, where R divides M. We choose R = Q xfls and 
M = 2 N x / - s  for appropriate Q and N. As earlier, the norm ][xrl is chosen 
SO x E D  R iff Uxl[ ~<R. Let 2 and # be random configurations whose states 
consist of finite numbers of particles at each site in 2U. We say that 2 
dominates # (on a set F) if it is possible to couple 2 and # so that # ~ 2 
for all co (eF). 

We also need to introduce two new processes. ~ will denote the 
restriction of our two-particle annihilating random walk at time t to the 
B particles present (i.e., ignore the A particles), t / f . ' ,  t>>.s, will denote 
the process consisting of independent random walks with ~ "  qs = ~ , w h e r e  
d is a random configuration of particles in Z d. We will in particular be 
interested in the case where ~ = ~ ,  a Poisson measure with density ~ ( x )  
at x~7/a. (~' as used here is not to be confused with the percolation 
substructure ~ . )  The processes tl, ~'" will typically be coupled to ~ for t ~> s. 
In keeping with our previous notation, ~R,j( t ;  ') will denote the (signed) 
number of particles in DR, j for the corresponding process. 

We now demonstrate Lemma 5.3. It says that at large enough t, one 
can dominate ~ by an appropriate Poisson measure with low density. 

Lommo 5.3. Assume that A and B particles are initially distributed over 
Z a according to (1.1) with rA<rs.  Then for all N, there exists tN (also 
depending on rA, rB) so that for t~>t N, i t  s is dominated on a set of 
probability at least 7/8 by a Poisson measure ~ with 

~(X)=2d+S(rB--rA) for Ilxll ~ < N ~ - ,  

=2r B for Ilxll > N x / t .  (5.9) 

Note that it should of course be possible to show the analog of (5.9) with 
the coefficient of (rB--rA) inside the cube as close to 1 as desired and 
outside the cube = 1. The authors could almost show this but got tired of 
trying. The point is that ifrB--rA is small, then so is ~'(x) for ][x][ ~< N~/~.  
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Proof of Lemma 5.3. We first note that we can assume that 
2a+5(re - rA)~< 2rs, since otherwise the bound is trivial. By Corollary 2 of 
Lemma 5.1, for each e > 0 and large enough R and s, 

P [~R(s ;  ~B) ~> 2(m8(R) - mA(R))] < e. (5.10) 

Set e = el/(2N/Q) d, where el = 1/16. Then 

P[~R, j ( s ;  ~e) >~ 2(ms(R) - mA(R)) for some j e  J ~ ]  < 1/16 (5.11) 

for s >>. t N .  

We will now compare ~ ,  t/> s, with the process tt~ ~'~ with Poisson 
measure ~ ,  

~l(x)=2a+4(rB--rA) for /[xll ~<M, 

= 2rB for Ilxll > M .  (5.12) 

It is a simple large deviations estimate (similar to that used in Lemma 5.1) 
that for large enough R, 

e[~3R, j(s;  r/~1'') ~< 2J+ 3(mB(R)--mA(R)) for some JeJM] < 1/16. (5.13) 

By (5.11) and (5.13), 

P[~R,j,(s;tl~")>~2a+2~R, s2(s;~B),Vj~,j2eJM]>~7/8. (5.14) 

Denote the set on which this inequality holds by G. For each B particle at 
Y~ j c ~ f ,  J6JM, one can therefore choose 2 a+2 random walks at 
yi, ls,~t,,  i~I, 1 ~l~<4, where, using the notation above Lemma 5.2, 

yi'l e DtR, j = DR, j q- Ri. (5.15) 

These 2 a+2 random walks move independently. By choosing Q 
( = R / x / s )  not too large, one can therefore employ Lemma 5.2 to couple 
the B particle at yO with the random walks at yi, t so that after further time 
s, this particle will (if it has not yet disappeared) occupy a site occupied by 
one of the corresponding random walks from t/~1''. The 2 a+2 random 
walks corresponding to each B particle in DM~ ~B are assumed to be 
distinct; this coupling can therefore be performed simultaneously over all 

C B such B particles. On the other hand, ~ t/,, the number of B particles 
from the corresponding noninteracting process. We will use this for B 
particles at yOe ~S-s DM. rlBs is Poisson distributed with constant mean re. 
One can therefore use it and an independent copy on D~t to construct 
there. This gives an obvious coupling of i s to n ~'s for particles outside 

s ~ s  
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DM. The independent copy of ~/~ on D~t is used to contribute random 
walks used in the first part of the construction for coupling in the cases 

i c where y~ i c~  ~, but DR, j c D  ~. 
We can therefore couple the processes ~ and ~/~1,~ starting at time s 

on G so that: (1) each B particle at y~ ~ occupies the same site as 
one of the corresponding 2 a+ 2 random walks at y~,te r/~,~ for all t t> 2s and 
(2) each B particle at y ~  occupies the same site as the corre- 
sponding random walk starting in ~ for all t >~ s. B particles from ~ may 
disappear, but not random walks from q~l,s. So for each particle present at 
~ on G at time s and still existing by time t/> 2s, there is a corresponding 

s 

particle from ~1, ,  at the same site. We have therefore shown that for s ~ t N 
and t ~> 2s, 

P l - ~  = n~',s3 >/7/8. (5.16) 

We will apply (5.16) at t = 2s. 
To finish, note that since n el'" is Poisson, so is ,.~,s Also, ~ s  '12s  " 

E[tlfJ'S(x)] = ~ E[q~s'"(Y)]P[Y~=x]+ ~ E[tl~"'(Y)]P[Y~=x] 
y e D M  p • D M  

~2a+4(rB--rA)+Zrs Z P[Y~P=x].  (5.17) 
y ~ D M  

For XeDN. ~ and yq~DM, [[x--yll>~Nxfs/2. By choosing N large 
enough, the last sum in (5.17) can be made as small as desired. So for large 
enough N and s>>, tN, and xeDN,/-~, 

E[ t / f ) " (x ) ]  .~< 2 a+ 5(r B - rA). (5.18) 

Since the larger N, the stronger the statement, (5.18) holds for all N. On 
the other hand, 

E[q2 s ( x ) ] ~ 2 r B  (5.19) 

is always true. So ,r'~l'S2s is Poisson with densities bounded as in (5.18) and 
(5.19). The conclusion of the lemma follows from this and (5.16). | 

Lemma 5.4 says that up to a given time, a typical random walk Y~' 
will not meet more than a specific number of other random walks, this 
amount  depending on the initial densities given. More specifically, we 
consider the process qs of noninteracting random walks with r/o given by a 
(not necessarily Poisson) random initial measure with density r(x) at each 
x E 7/a. Add to this another independent random walk Y~ with Y~' = y. Let 
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9l(t) = the number of random walks (from t/) Y( meets by time t. Then the 
following holds. Recall that 

ga(t) = x/7, d= 1, 

= t/log t, d = 2, 

=t, d>.3. 

Lomma 5.4. Suppose that 

Then, for t~>to, 
appropriate C2, 

(5.20) 

r(x)<<.r for Ilxll ~N~, 
~<r' for ]lxll > N x / 7 .  (5.21) 

Ilyll<<.N/2 and N>~No (depending on r,r'), and 

P[gt(t)  f> C=rga(t)] < 1/4. (5.22) 

ProoL One can give a proof by reasoning similar to that in Lemma 4.1 
by generalizing the bounds on the function Gt, obtaining estimates similar 
to (4.4) but for all x and in the opposite direction, and then integrating. 
Instead, we present the following argument. First, introduce the following 
notation. Let l(s) be the number of random walks of t /a t  YY at time s. Let 
Tk denote the time at which the kth distinct random walk and YY first 
meet; we order the random walks so that T1 ~< T2 <~. . . .  Also, let Lg(s) 
denote the amount of time spent by YY and this kth random walk at a 
common site up to time s. 

Since IqYl] <~N/2, it is easy to see that i f s ~  [0, 2t] and N>~No, some 
appropriate No, then 

E[l(s)] <~ 2r; 

consequently, 

On the other hand, 

Now, 

E[I~'l(s) ds]= E I ~  Lk(2t) ] 

>~ ~ E[Lk(2t); Tk <~ t]. 
k 

(5.24) 

E[Lk(2t); Tk <~ t] >>. P[Tk <~ t] G,(O), (5.25) 
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where Gt(0) is defined in (4.3) and is the expected occupation time at 0 up 
to time t spent by a rate-2 random walk starting at 0. As mentioned in 
Lemma 4.1, 

G, (0) ~ ~'at/ga(t) (5.26) 

for large t. (The reasoning for d =  1 is the same.) So putting (5.23)-(5.26) 
together produces 

4rt >~ (~'at/ga(t)) ~ P[Tk <~ t] = (fl'dt/ga(t)) EI-9l(t)]. 
k 

So 

EEgl(t)] ~< (4//~}) rga(t). (5.27) 

(5.22) follows from (5.27) and Markov's inequality. | 

In Lemma 5.5, we show that if r a is close enough to r B, then in d =  1 
the event that the number of A particles initially locally exceeds the number 
of B particles will be large enough to entail a comparatively large survival 
probability of A particles. 

Lemma 5.5. Assume initial data as in (1.1) in d =  1 with 3rB/4 < r A < r e. 
Then for appropriate C3 and large t (depending on r~, re), 

pA(t) >~ exp{ - C3x/-t (re - r A)Z/re}. (5.28) 

Proof. ~3A(0--), D~t(0--)  are Poisson distributed with means mA(M ) 
and mB(M). ( M  will be chosen to grow proportional to , ,ft .) We can apply 
Stirling's formula to show, with a little computation, that 

P E ~ ( 0 -  ) -- E 2 m A ( M ) - m e ( M ) ] ]  

I \ 2mA -- m B ] 

>~C4exp{2(mA--m,)}  2m-Am--~Sme) /x /27r(2mA--me)  

(5.29) 

for appropriate C4 >0,  where we abbreviate mA(M) (m~(M)) by m a (me) 
and Ix]  means the integral part of x. (For simplicity, we assume M is large 
enough so m s -  1 ~ me.) The right side of (5.29) 

exp {2(mA - m~) + (2m A - m ~ )  C4 

xlog (1 " 2(mB 

822/62/1-2-22 
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Using the inequality log(1 +x)>>,x-x2/2, x~>0, and 3rB/4<rA<r B, we 
see that this is at least 

C4 exp { - 4(mB(M) -- mA (M))2/mB(M) }/x/2nmB(M). 

Of course, this bound is what one would expect by plugging in a normal 
approximation for the Poisson distribution. Also, note that 

I 
P [ ~ t ( 0 -  ) = [mA(M)] + 1 ] ~ x/2rcmA(M) (5.30) 

for large M. Let 

F =  {~)A(0--)= [mA(M)] + 1, ~)BM(0--)= [2ma(M)-  mB(M)3 }. (5.31) 

P(F) is given by the product of the probabilities in (5.29) and (5.30); for 
our purposes, this is a large enough event to work with. We consider the 
process ~ with ~o conditioned by assuming that F holds; denote the new 
process by ~F. Also, let r/F be the corresponding process of independent 
random walks. We will show that for appropriate M, E[~M(t; ~F)] is 
bounded below and away from 0. The density of A particles in DM will 
therefore not be too small and this will give us a bound on pA(t). 

To see this, set 

mr(M) = _E[~)M(S; ~F)] = _E[~)M(S; t/F)], 

where M = N x / t  and N is fixed. Of course, 

mF(M) = [mA(M)] -- [2mA(M) -- mB(M)] + 1 

>~me(M)--mA(M) = Ux/-[ (rB-- r ~). (5.32) 

It is easy to choose N large enough so that not enough random walks have 
crossed the boundary of DM by time t to change the value of mF(M) much. 
(Recall that t/o ~ outside of DM has constant density.) We can therefore 
choose N so that 

mF( M) >~ mF( M)/2 >1 (m ~( M) -- m A( M) )/2. (5.33) 

Consequently, 

E[~A(t; ~F)'] ~ (me(M) - mA(M))/2. 

So for the process r 

>_ C5 
E[~)~t(t; ~)] ,/rnB(M) (mB(M) -- ma(M)) 

x exp { -- 4(mB(M) -- mA(M))Z/mB(M) } 

(5.34) 
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by (5.29)-(5.30) for appropriate C5 >0.  Sinice ~ is translation invariant, 
this implies 

pA(t) >~ C5 (r B -  r A) exp{ - - 4 N ~ f  t ( re--  r A)2/r~}. 
re 

(5.28) follows for appropriate choice of C3. | 

One can now follow the outline presented at the beginning of the 
section to prove Proposition 4. Most of the work is to compute the 
dependence of PA(t) o n  r A, re. 

Proposi t ion 4. Assume that A and B particles are initially distributed 
over 2 a according to (1.1) with 0 < r A < r  B. Then for ga(t) defined as in 
(5.20), 

pa( t )>~exp{ - -A( ( rB- - rA)2 / rB)g l ( t ) } ,  d =  1, 

>~exp{ - -A ( re - - rA )gd ( t ) } ,  d>~2, (5.35) 

for appropriate A (depending on d) and large enough t. 

Proof. Before beginning the main of the proof, we modify the above state- 
ment slightly. It suffices to instead show that a random walk yO, with 
yO = 0, does not meet any B particles by time t with a probability at least 
as great as that given on the right side of (5.35), with some A ' < A  
substituted for A. (We are in effect inserting an extra A particle into the 
system, which could conceivably alter the dynamics.) To see this, note that 
A particles can be broken into two groups with Poisson random measures 
and with densities e > 0 and rA = e. yO can be chosen from the first group 
with all other such A particles being discarded; the A particles from the 
second group are assumed to evolve and to interact with B particles as 
usual. After computing the probability that yO meets no B particles for this 
modified system, we can then invoke the "maximum principle," Lemma 3.2, 
to justify the same bound for yo meeting no B particles in the original 
system. 

We restrict our attention to 

G I =  { II Y~ ~< Nlx/ - t  for s e  1-0, t]}; 

one can choose N 1 large enough so that 

P[G~ ] ~> 7/8. (5.36) 

One is interested in seeing to what extent Ys ~ restricted to G1 must hit 
random walks starting from certain configurations at times 0 -  and a given 
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tl. To be more specific, let ~1, N2 be Poisson measures with densities 
~ ( x )  - 2re and 

~2(x)=Za+O(rB--rA) for [[xli <<.2Ulx/-f--Z--tl, 

=4re  for I / x l l > 2 N l x / t - t l ,  

where t I = 6t, 0 < 6 <~ 1/2, will be chosen later. We set t 2 = t - -  t l. Consider 
the processes of independent random walks ,sn~l'~ se  [0, t l] ,  and ,~ . t l  " I s  ' 

se  [t~, t], introduced before Lemma 5.3. Let 911(tl) and ~l~2(t ) denote the 
number of random walks from each process that yO ultimately meets. By 
Lemma 5.4 with r = r' = 2re, if t~ ~> to, then 

P[~ll( t i)  ~>f~(t~)] < 1/4, (5.37) 

where 
f~(tl) = 2Czre ga(tl). 

One can also apply Lemma 5.4 with N = 2N~, 

r=2a+6(re--rA),  r '=4re ,  

to conclude that for N1 large enough, 

P[gl2(t) ~>/2(tz); G~] < 1/4, (5.38) 

where 

f2(t2) = 2a+6Cz(r e -  r A) ga(t2). 

We now consider the following "thinning" procedure for ~1 and ~2. 
For every random walk in ~ at time 0 - ,  flip a fair coin. If it comes up 
heads, keep the random walk, otherwise discard it immediately. Denote by 
~ ]  the measure of such remaining random walks at time 0 - .  We can 
consider these remaining random walks as "authentic," and the discarded 
random walks as "bogus." ~ ]  is Poisson with ~](x)_= re; it has the same 

e t/~i,0- distribution as 40-- Particles in just execute random walks, whereas 
those in ~e can disappear (by hitting A particles). One can assume without 
loss of generality that the processes are coupled so that particles move 
together and ~ _  = ~'~; then, 

~ ~ t / f  I,~ for all s s  [0, tl]. (5.39) 

One can follow the same procedure for ~ ,  and denote by ~ ;  the 
measure of remaining random walks at time tl. N;  is Poisson with 

~'2(x)=2a+5(re--rA) for ]Ix[[ ~<2Nlx/~2, 

=2r e for ]lxl[ >2Nlx~22. (5.40) 
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On account of Lemma 5.3, D~ dominates the measure ~ on a set of 
probability 7/8 for t = tl/6 >i rules with 

N = 2Nl ~/tz/tl = 2N1 x / ~  - 6)/6. 

That is, ~2 can be coupled to ~ so that on an appropriate set G 2 with 

P [ 6 2 ] / >  7/8, (5.4l) 

r  Y'~ As above, particles in CB can disappear whereas particles in r/~''1 
t l  

do not. One can therefore couple the processes so that o n  G2, 

~ = r#~ ~'t~ for all s ~ [ t l , t ] .  (5.42) 

We now put everything together. Let 91(t) denote the total number of 
random walks from both r/e' '~ and 17 ~''~ over the intervals [0, t~] and 
Its, t] that yO ultimately meets. Also, let 91'(0 (91~(t)) be the number of 
random walks (B particles) from ~/~i.o- and r/~i''~ ( ~ )  that yO meets. On 
account of (5.39) and (5.42), 

9 i r  on G2. (5.43) 

We wish to compute a lower bound for P[9 l r  0] to obtain (5.35). By 
(5.37) and (5.38), 

P[9l( t )  > f ~ ( t 0  + f2(t2); G~] < 1/2. (5.44) 

Since the choice of authentic/bogus particles is independent of everything 
else in the processes, 

P r g ~ ( t )  = o ] />  e [ 9 l , ( t )  = o; G23 

~> P[91(t) ~<fl(tl) + f2(t2); Gx ~ G2] 2 -(fl(tt)+f2(t;)) 

>1 ( �89  c~ G2)~])2 -(f~(t~)+ f2('2)) (5.45) 

On account of (5.36) and (5.41), this is 

>~ 2 -(s~(~) + f~(,~)+ 2) (5.46) 

So by (5.45)-(5.46), 

P[gir = 0]/> 2 (fl(t,)+f2(t2)+2) (5.47) 

On the other hand, 

f~ ( t l )+f2( t2)+2=ZCzrs~ga( t l )+2a+6C2(rB--rA)  ga(tz)+2.  (5.48) 
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Since t l+ t2=t ,  it is not difficult to check that for small enough 6 
(depending on rA, rB) , ga(tl) will be sufficiently small so that (5.48) is 

~< 2a+ 7C2(r8 - rA) gd(t). (5.49) 

By (5.47)-(5.49) with A' = 2d+7c2 log 2, 

P[~R~(t) = 0] 1> exp{ - A ' ( r e -  rA) gd(t)}. (5.50) 

(5.50) is the desired bound. As noted in the beginning of the proof, this 
implies (5.35) for d~>2 with A>A' .  For d = l ,  note that Lemma5.5 
already gives us (5.35) for rA > 3r~/4. For rA ~ 3rB/4, (5.50) works if we 
increase A by a factor of 4. (One can also give a much simpler argument 
in this case by computing the probability that B ~/s c~ D / 7 =  ~ for all 
s e  E0, t].) II 

6. Upper Bounds for Unequal Densities, d> 1 

In this section and the next, we give upper bounds on pA(t) for 
r A < rB; these correspond to the lower bounds given in Section 5. Here, we 
need to show that A and B particles are sufficiently randomly distributed 
so that a typical A particle "feels" the greater density of B particles. Then, 
presumably, the decay of pA(t) should be exponential. As might be expec- 
ted from the somewhat different nature of the results, the reasoning for 
d > 1 and d = 1 differs. We will do the case d = 1 in Section 7. 

The Basic Idea; Lemmas 6. 1 and 6.2 

In Lemmas 6.1 and 6.2, we give lower bounds on the number of other 
random walks (starting from a fixed concentration) a random walk will 
typically hit by time t. In Lemma 6.2, this number will be of order ga(t) 
(already defined in (1.22)), 

gd( t )  = , / 7 ,  d = 1, 

= t/log t, d = 2, (6.1) 

= t ,  d~>3. 

The probability that substantially fewer random walks will be hit will be 
exponentially small with exponent of order gd(t). If one multiplies this 
exponent by rB--rA, the ultimate density of the B particles, and then 
exponentiates, one obtains the bound in Proposition 5. The dependence on 
t but not on the initial densities is also correct in d =  I. On the other hand, 
it should presumably be the case that if an A particle hits on the order of 
gd(t) B-particles when annihilation is suppressed, then this A particle 
should in fact meet a B particle, and thus disappear. It therefore makes 
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some sense that the probability that an A particle survives is bounded by 
this exceptional probability. Unfortunately, in a rigorous argument one 
needs to pay particular attention to the possibility that A particles could 
conceivably cluster (they do in d =  1). Such clustering might allow the A 
particles to "protect" each other, thereby interfering with the above 
scenario and slowing down the rate at which A particles meet B particles. 
We were therefore not able to obtain a direct argument using the lemma. 
Instead, Lemmas 6.3-6.6 give an indirect argument based on iteration. The 
rate obtained in this manner is much slower than the actual rate, but still 
suffices when used together with Lemma 6.2. This is carried out in the 
proof of Proposition 5. Unless stated otherwise, d >  1 will be assumed for 
the remainder of the section. 

Lemma 6.1 says basically that if random walks yyl, j e j ,  satisfy an 
approriate initial concentration relative to a given path y(s), then the 
probability y(s) meets at least one of them by time t is at least a fixed 
multiple of 

fa(t) = 1/log t, d = 2, 
(6.2) 

= t ~ -a/2, d>. 3; 

let T be this hitting time. DR, j, j ~ Z +, will denote disjoint translates of the 
cube DR which partition 7/a. J will be the set of j where y(s)~ DR, j for 
some s ~ 1-0, t]. 

Lomma 6.1. Assume that y i ~ D / 7 , j f o r j e J .  Then for appropriate CI>0 
and large enough t (not depending on y(-) or yj), 

PIT<. t] >>. Clfd(t ). (6.3) 

ProoL Let Gs denote the event that Yf ,=y(s)  for some j s J .  We will 
show that 

E[f'o lcsds] ~'oP[G,] ds 
P[T<~t]=E[[,ola d s l T < ~ t ] - f , o p [ a s [ r < t ] d  s (6.4) 

is at least clfa(t ) for all choices of y(.). The proof is thus a "suped-up" 
version of the proof of Lemma 4.1. The points yj have been chosen so that 
no matter what y(s) is, it will be close to some yj. 

The numerator on the right side of (6.4) is easy to analyze. Of course, 

Jo it 'P[Gs] ds~ PIG, Iris. (6.5) 
/2 
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For given s, choose j so that y(s) ~ D/7,  j. Since yj ~ D/7 , j ,  

I ly j-  y(s)ll <.2.,/7. 

So by the local central limit theorem, if s >>. t/2, then 

PEG,] >1 P[ Yf '  = y(s)]  t> (c2/t) u/2, (6.6) 

for appropriate c2 > 0 and t not too small. Plugging (6.6) into (6.5) gives 

foP[G,]  ds>~c3/t d/2 1 (6.7) 

To analyze the denominator in (6.4), we introduce the following 
notation. Let Jt denote the smallest of the indices for which YY, and y( . )  
meet by time t under T~< t. Also, set 

P j = P [ J , = J l  T<~t]. 

The denominator can then be rewritten as 

& P[G~IJ ,= j ]  ds. (6.8) 
j = l  

Decomposing the event Gs and noting that Y[, = y(s) does not occur for 
k < J t ,  we see that (6.8) is at most 

pj P[YYJ= y ( s ) l J t = j ]  ds 
J = l  

+,~.-L pj PEg[k= y(s), some k>jlJ ,=j]  d s  . (6.9) 

Since yyk is independent of YY, for k > j ,  

p[  y[k = y(s), some k > J I Jr = J] = PE Y2 k = y(s), some k > j ]  

<~ P[ Y[~ = y(s), some k >~ 1 ] = PEGs]. (6.10) 

So the second sum in (6.9) is 

s PEGs] ds. (6.11) 

Let Tj be the first time at which Yf, = y(s). The integral in the first 
sum in (6.9) can be rewritten as 

f o P [  Y[J = y(s)l Tj <~ t] ds; 
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this is at most 

fo P[ Yf~+ ~= y(s + Tj)I Tj <<. t]ds. (6.12) 

The quantity in the last integral is the probability that a random walk 
starting at 0 is at y ( s + T j ) - y ( T j )  at time s. Again applying the local 
central limit theorem, this quantity is at most 

C4/(S d/2 k/ 1). (6.13) 

Integrating (6.13), we see that the first sum in (6.9) is at most hd(t), where 

ha(t) = c5 log t, 

~C5,  

(c 5 will depend on d). 
Together, (6.11) and (6.14) show that 

d ~ 2~ 
(6.14) 

d~>3 

PIGs [ T<~ t] ds <~ ha(t) + PIGs] ds. (6.15) 

Using (6.4), we have that 

P[r<~t]>~ ha(t ) P[Gz]ds+l  . 

By (6.7) and (6.14), this is 

>~clfa(t), 

for appropriate el > 0. This implies (6.3). | 

In Lemma 6.2 we apply Lemma 6.1 with the independent random walk 
yO (starting at the origin) being substituted for the path y(s), and the 
number of random walks starting in each D/7.  j being increased. The 
conclusion is that, except for an exponentially small probability, yO hits a 
large number of these random walks by time t. The notation from 
Lemma 6.1 is used. We let ~ denote a set of independent random walks. 
Let ~(t) be the number of these random walks hit by yO by time t. Also, 
let ER(t) denote the event for which yO e D R for all s~ [0, t]. It follows 
from a simple large deviation estimate (using the moment generating 
function) and the reflection principle, that for appropriate c6, c; > 0, 

P[E~(t)] ~< 4dexp{ - e6R  log(1 + R/t)} 

~< 4dexp{ -c'6(R A (R2/t))} (6.16) 
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for R , t > 0 .  We will use (6.16) later on (such as in Lemma6.3 and 
Proposition 5). We note here that plugging in R = t 6, 6 > 1/2, one gets 

c ~ 4, PIEty(t)] ..~ 4d exp{ -c'6t ~ }, (6.17) 

where 6' = 6/x (26 - 1). 

Lemma 6.2. Assume that there are at least [O~t d/2] -k-1 random walks in 
initially contained in each cube D.f; , j  intersecting D,6, with ~ >0,  

6 > 1/2. Then, for large enough t (not depending on the initial positions), 

P [~ ( t )  ~< Cl~gd(t)/2; Eta(t)] ~ exp{ --ficl~ga(t)/4} (6.18) 

where fl is as in Lemma 4.3 and cl as in Lemma 6.1. 

Proof. By assumption, we can construct subsets ~W 1 ..... ~ " ,  
n = [~t d/2] + 1, of ~/~ which contain distinct random walks starting in 
D,/7 J for each D / 7  j intersecting D,~. Let T k be the first time at which yO 
hits a member of ~-k. On Et~(t ) the hypothesis of Lemma 6.1 is satisfied 
with y(s)= yO for each k. Therefore for each k, 

P I T  k <~ t[ y0]  ~> clfd(t), (6.19) 

on Eta(t). The events {T k ~< t} are independent given y0. So we can apply 
the corollary of Lemma 4.3 to (6.19) to conclude that 

P[{i~(t)<~clnfd(t)/2}l y0] <~exp{--flclnfa(t)/4} (6.20) 

on Eta(t). Since the bound on the right does not depend on yO, (6.20) 
reduces to 

P[!~(t) ~ clegd(t)/2; E,6(t)] ~< exp{ --flcl~gd(t)/4}. | 

On account of Lemma 5.1, it is not difficult to see that the hypothesis 
of Lemma 6.2 will be satisfied for the B particles of the process ~ at 
any given time t, t not too small, except on an event of probability 
exp{-c(ta/2}, cd>0. More explicitly, one can choose c~=(rB--rA)/2 in 
Lemma 6.2 and ~'= (r~--rA)Z/24re. For our purposes, we may omit this 
small exceptional event. The conclusion of Lemma 6.2 together with (6.17) 
is that a random walk typically hits on the order of egd(t) random walks 
which correspond to B particles, but do not disappear. The probability of 
the exceptional event is again small, being bounded by exponentials with 
exponents of the form -C~ga(t)  (the right order) and --C6 t6' (where 
ultimately, we will choose 6'~> 1). So applying Lemma 6.2 to ~t, where yo, 
s e [0, t], corresponds to the motion of an A particle over It, 2t], we see 
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that this A particle will disappear by time 2t if at least one of these 
approximately ~gd(t)  B-particles from time t still exists by time 2t. This 
reasoning will ultimately produce Proposition 5 for d>~ 2. It is however 
conceivable that all of these B particles unluckily meet other A particles 
before having a chance to meet this particular one. The purpose of Lemmas 
6.3-6.6 is to show that with high probability there are fewer than ~gd(t)  
A-particles which pass through D2,6, 6 > 1/2, over I-t, 2t]. Most A particles 
will have already disappeared by then. (The case d = 2 will actually require 
some further work.) It will therefore be almost impossible for all these B 
particles (which must visit Dt~ and hence usually remain in D2,6) to avoid 
hitting our specified A particle. 

Some Properties of t~--Lemmas 6.3 and 6.4 

For Lemmas 6.5 and 6.6 we will be interested in eliminating the effect 
in Dzt6 of A particles from ~s which are ever outs ideD3,6 .  We therefore 
introduce the process ,~'s consisting of A and B particles which execute 
random walks and annihilate each other as before, but for which A 
particles disappear upon reaching D~,6. By defining t~ on the same percola- 
tion substructure ~ as (, one obtains a natural coupling between the two 
processes. To compare ~ and ,~', one can proceed along the lines of (3.2) 
and Lemma 3.1. At each y~D~3~6 for which ~o- (Y)# ,~o- (Y) ,  one intro- 
duces random walks y.i X s , i =  1, 2 ..... Iy, which evolve according to ~ as 
specified between (3.1) and (3.2) (the number Iy at y being the difference 
, ~'o (Y) - ~o-(Y) = number of A particles initially at y for (). Also, introduce 
random walks X~ k, s >~ ~k, k = 1, 2,..., which evolve in the same manner and 
are created when an A particle starting from D3,o first moves outside at 
time ak. (This last part can be avoided with a little more work in 
Lemma 6.6.) The number of these random walks at a site x at time s equals 
, ~ ( x ) - ~ s ( x  ). The random walks evolve independently; since they all 
originate from "extra A particles," they will not annihilate one another. If 
one wishes, one can construct X y'~, X ~ by inductively applying the 
procedure between (3.1) and (3.2). 

We let cg denote the set of the above random walks X y'~, X ~k which 
are ever in Ozt~ u p  to  time 2t. ],W[ will be used in Lemma 6.6 to bound the 
difference in the number of A particles visiting D2,6 up to time 2t for the 
processes ( and ,~. Lemma 6.3 shows that [/g[ is typically small. The basic 
idea is to show using (6.16) that with high probability, only a few of the 
random walks X y'i, X ~k can cross from OD3p to 02,6 , ~ > 1/2, by time 2t. 

L e m m a  6.3. Assume that A and B particles are initially distributed over 
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yd according to (1.1) with r A < r  B. For 6 >  1/2 and any constant C7~>0 , 

there exists ca > 0 so that for large t, 

P[jtc~l >~c7(rB--rA) gd(t)] <~exp{--cs(rB--rA)  gd(t)}.  (6.21) 

Also, for appropriate c 9 > 0, and large t, 

P [ t ~  r ~ ]  ~< exp{ --C9t6'}, (6.22) 

where 6 ' =  6 A ( 2 6 -  1). 

Note that the bound in (6.1) is not sharp, although it suffices for 
Lemma 6.6. In particular, (6.22) implies (6.21) for 6 > 1. 

Proof  o f  L e m m a  6.3. We define a family { yy.i}, y s Zd, of independent 
random walks starting from ~o A as follows. For y ~ D;,6, 1 ~< i~< Iy, set 

ys y, i = Xs y, i for all s. 

For y ~ D~,~, let Iy (as before) denote the number of A particles initially at 
y,i <~ Iy, evolve according to the same percolation substructure y ; le t  Ys , l~<i 

as 4, but with no annihilation. If the corresponding A particle in 
survives until it hits ~?D3,~ at time ak, set 

Y Y " = X ~  k for s>>-ak. 

Clearly, the family of random walks { YY" } defined in this manner contains 
{ X  y'i} w {X~}. Note that the family { yy, i} has initial state ~ A ,  which is 
Poisson, and has density r A at each point. 

We consider the subset , d  of { YY'~} where 

sup II Y f ' ~ -  Y]I >/t~/2 . (6.23) 
s e  [ 0 , 2 t ]  

Note that for either X y'~ or X ~k to enter Dz~, (6.23) must hold. By (6.16), 
for all y, i, 

def  
~, = P [  sup I I Y f " - y l l ~ > t a / 2 ] < . 4 d e x p { - c ' 6 t a ' / 8 } ,  

s s  [ 0 , 2 t ]  

where 6' = 6/x (26 - 1 ). 
Denote by ,qs the process counting the number of random walks in 

,sr at time s at each point in 7/d. We are interested in tqzt. Since the 
random walks YY'~ evolve independently, t~/2, is a Poisson random 
measure. By the spatial homogeneity of ~o A and ~r ,th, has density 

r A ~t <~ 4dr A exp { - c'6 t~'/8 }. 
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Set R = ~t ~. ~R(2t; t~) is therefore Poisson with mean 

<~ (~t~)d4dr A exp{ --c'6t~'/8 } <<. 2-c 3 10 gd(t) 

for any Clo > 0 and large t. We use Lemma 5.1 in the simplest case where 
t = 0 and the minority type does not exist. (Or, one can just reapply the 
moment generating functions there.) It follows that 

P[TbR(2t; , t l )>~c10gd(t)]<~exp{--Clogd(t) /36 } (6.24) 

for large t. 
We want the analog of (6.24), but for all s ~ [0, 2t] rather than just 2t. 

We get this by standard reasoning using the first time the random walk 
yy.i enters D2to after crossing 8D3t~. Let t@ denote the set of the (at most) 
4cloga(t)  first yy ,  i to thus enter Da~ by time 2t. Note that 

I ~ l / '  [4clogd(t)]  <~ 1,31, t@~ , d .  (6.25) 

By the strong Markov property, for each (y, i), 

P[  Yf;'  e DRI ( y, i) E ,@] >~ P[ Y~ e D,6/2 for all se  [0, 2t]] ,  

where yO denotes a random walk starting at 0. Since 6 > 1/2, the right side 
can be chosen as close to 1 as desired by choosing t large. So 

E[ # ( Y2Y;ie DR, (y, i) e c~)] >~ 2clo gd(t) rl-lt@l = [4clo gd(t)] ]. 

The quantity in the expectation is of course bounded by 4Cmoga(t). It is 
therefore easy to check that 

P[ # (YYii e DR, (y, i) e c~) >>. Cl0 gd(t)] >~ �88 = [4c10 gd(t)] ]. 

Combining this with (6.25), we see that 

P [ I S t / >  4Clo gd(t)]  <~ r[I,@[ = [4C~o gd(t)] ] 

<~ 4P[  # ( Y ~ ; ' e D R ,  (y, i )~ ,c~)>~cloga(t)]. 

By (6.24) and (6.25), this is 

~< 4P[~R(2t;  tq) >~ C~o gd( t) ] 

~< exp { -- C ~o g d( t )/36 }. 

If we plug in c7 = 4clo/(r~ -- rA) and c8 = Clo/36(rB -- rA) = C7/144, we get 

P [ [ S I / >  c~(r ~ - r A) gd( t) ] <~ exp { -- c8(r ~ -- r A) gd( t) }, 

which is (6.21). 
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The reasoning for (6.22) is simpler. As before, a random walk entering 
D2t~ before time 2t will typically still be in DR, R = ~t ~, at 2t. One obtains 
from this and (6.25) that 

P[ ,cg r (25 ] <~ P[ ted r ~ ] <<. 2P[ ~ R( 2t; tq ) r 0] ~< E[~)R(2t; ,r/)] = R'~r a at. 

As before, the last quantity is 

<~ 4dr A R a exp { - c'6 t~'/8 }. 

For c 9 < c'6/8 and t large enough, this is 

~< exp - c9 t ~' }, 

which gives us (6.22). | 

In Lemma 6.6 and Proposition 5, we will iterate the corollary of 
Lemma 6.5, which makes basic assumptions on the initial densities of A 
and B particles in the cubes DR, j, j e 2 ,  the disjoint translations of DR 
(introduced before Lemma 6.1). Here, j ~ ,  6 > 1/2, will denote those indices 
j with 

DR,j n D3p r (~J. 

In Lemma 6.4, we show that ~3~,j(s; ,~') is typically large and ~Aj(s;  ,~) 
typically small for all j ~ J 6 ;  ,~" is the process introduced earlier, with A 
particles killed when they reach D;,~. Here, we set 

sk = kLt / log t, d = 2, 
(6.26) 

= kLt  2/a, d >~ 3, 

where L > 0  will be chosen later (and will be large); k=O,..., K, with 
K =  [(logO~L] in d = 2  and K =  It (d 2~/a/L] in d~>3. In both cases s ight .  
(One can replace the exponent 2/d in d>~ 3 with any choice in [2/d, 1 ].) Set 
R~ = x /~"  The lemma is a simple consequence of Lemma 5.1. 

L e m m a  6.4. Assume that A and B particles are initially distributed 
according to (1.1) with rA < rB, but where the A particles are restricted 
to D3t6. Then for large t and any N > 0 ,  

P[~,,j(sk; t'~) ~ �89 -- ra)R~ for some k ~< K, j e  J ~ ]  

~< exp{ - N g a ( t ) } ,  (6.27) 

and 
PE~3AI,j(sk; ,~') ~> 3rA R a for some k ~< K, j e ~r 

~< exp{ - N g a ( t ) } ,  

for L chosen large enough (which depends on rA, rB but not on 6). 

(6.28) 
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In the natural coupling between ~ and,~,  ~ ~<,~  for all s. So the Proof. 
left side of (6.27) is at most 

B P[~Ri.:(Sk, ~) <~ �89 rA)R~ for some k ~< K, j e  J ~ ] ,  

where ~ has the initial measure given in (1.1). By Lemma 5.1, 

{ - ( rB-  r--A)2R~ (6.29) 
P [ 7 ~ . :  (sk;~)<~�89 24rB J 

for each k, j. Summing these probabilities gives 

P[7~l,:(sk; 3) <~ �89 (re - rA)R~ for some k ~< K, j ~ J ~ ]  

<~ -L t~a +1 exp -24r-~ J" 

For large enough choice of L in (6.26) and large t, this is at most 
exp{--Ngd(t)}. (This is the reason for our choice of s~, R~.) This shows 
(6.27). For (6.28), one can apply Lemma 5.1 again, this time substituting r A 
for re and 0 for r A in the lemma; alternatively, one can use the moment 
generating function to directly show the analog of (6.29), 

P[ R~'j(Sk'~)>~rAR~]<~exp "~r-BB J 

for each k, j. One continues with the same reasoning as for (6.27). | 

A Preliminary Iteration Scheme--Lemmas 6.5 and 6.6 

Lemma 6.5, its corollary, and Lemma 6.6 present the machinery by 
which the density of A particles is shown to decrease sufficiently as time 
increases so as to allow application of Lemma 6.2. The basic idea is that 
given sufficiently many B particles in each cube DR1,:, a fixed proportion 
of A particles starting in D3t~ will have hit B particles by time Sl = R~. The 
probability that this occurs will be very high if there are not too few A 
particles (or too terribly many) and they are not bunched up in just a few 
cubes DRI,:. Iteration of this procedure gives a sufficiently rapid decrease 
of A particles to apply Lemma 6.2. (In d =  2, one needs to work a little 
harder.) 

In Lemma 6.5, we carry out the first part of this argument. We find it 
convenient to work with the process q consisting of A and B particles 
undergoing independent random walks which do not interact, and has 
initial state given by (1.1) but where A particles are initially restricted to 
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D3t~ (no killing of A particles is assumed). Let J/3tds) denote the number 
of sites in D3t6 with at least one particle of each type at time s. Lemma 6.5 
says that under the right conditions, Jg3t6(s) will typically be large. If 
Jg3t~(s) is large, then a given proportion of the A particles in ,~ must dis- 
appear by time s; this is utilized in Corollary 1. The result one obtains is 
iterated in Lemma 6.6. 

I_ommo 6.5. Let R=x/~>>,t ~ for some ~>0.  Assume that for some 
C~, C2, M > 0 ,  

7~,j(O;O)>>.C~R a forall j E J  ~, (6.30) 

7~A,j(O;O)<<.C2R a for all j ~ J ~ ,  (6.31) 

and 

~J,~(O;O)= ~ ~)Aj(O;O)~>M. (6.32) 
j e ~  6 

Then for appropriate C3, C4 > 0 depending on C1, C2, but not 3, 

P[~3t~(s) <~ C3M] <~ exp{ - C4(M/x Ra)} (6.33) 

for large t. 

ProoL The basic idea is as follows. Let Yf denote a random walk with 
Yo y = y, and set 

hs= rain P [ Y f = x ] .  (6.34) 
x, y E D R  

Note that for s not too small, it f611ows from the local central limit theorem 
that 

h s >~ Cs/R a (6.35) 

C5>0.  Consequently, if y e D R  and ~ c D R  with for appropriate 
loll/> C6 ed, then 

PE Y~ 6 ~/] >~ CsC6. (6.36) 

Using (6.36) together with (6.30), we will show that for all j ~ J 6 ,  at least 
a fixed proportion of DR,: is at time s covered by B particles with high 
probability. Using (6.36) again but with (6.31) and (6.32), we will show 
that each individual A particle will with good probability be at one of these 
sites, and that these particles are not concentrated at too few such sites. 
(6.33) will follow from the large deviations estimates in Lemma 4.3. 
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Let Y~,J, i = 1 ..... n, j ~ Ja ,  be an ordering of the positions of the "first" 

n = [(C~ /~ 1)R"]  (6.37) 

B-particles in Dn, j at time 0. Denote  by y.v,, the random walks associated 
with these particles. For  each j, we define the events G~,j inductively as 
follows. Let  

offi, J = ~ y y t , :  YY,,,:} C3 D ~ , j ;  (6.38) 1. s ~'", 

abbreviate for i =  n by setting ~ J =  ~ n'j. Also, let 

~i,J = D R, s-- ~i,s. (6.39) 

We set 

Gi, j=  {co: Y f ' , : e ~  i "J}. (6.40) 

That  is, Gi, j occurs when Y;'J is at a site in DR, s occupied by no "previous" 
B particle. 

Now,  on account  of (6.37), 

1:'2 i "Jl > IR" (6.41) 

for all i, j, no mat ter  what  the behavior  of yf, '4 i '<  i. So by (6.36), 

P[Gi.s ] a(Gl,s,..., Gi_ i , j)]  ~> CJ2  (6.42) 

always holds. It is therefore not  difficult to see that  for each j, the n-tuple 
1 c~,j ..... 1 c, ,  dominates  i.i.d, r andom variables B W 1,..., B W n with 

P[~W~ = 1] = C5/2, P[BW~ = 0] = 1 - CJ2. (6.43) 

(That  is, the n-tuples can be coupled so that  ~ W i =  1 implies Gi, j occurs.) 
Applying Corol lary  1 of Lemma 4.3, one obtains 

P la,,;<,Csn/4 ~ P  eWi<~Csn/4 ~ e  -CsBn/4 (6.44) 
i=  i t 

for all j ,  where fl > 0 is as in the corollary. Let G be the event 

G = { ~ o : ~  1G, > C , n / 4 f o r a l l j e J  a} 
i = l  

= {co: ]~Jl > C5n/4 for all j e j a } .  (6.45) 

822/62/1-2-23 



352 Brarnson and Lebowi tz  

On account of (6.44), 

P [ G  ~] ~ 3atMe -c5~/4  <~ e-C~ n (6.46) 

We set 

Also, let 

A . I: = [ C 5 n / 8 ]  /x :DR,:(O , ~). 

On account of (6.31) and (6.37), 

c5n/8 >1 c5(c1 A 
#) 

Set C8 = (C5(C1 /x �89 1. Together with (6.32), this implies 

~, I j > ~ C s M .  
j E J  a 

We can for convenience choose l j  <~ I: for all j with 

m = - Y', Ij=[CsM]. (6.48) 
j c f  a 

We proceed to construct events Hi4, i = 1 ..... m, j 6  j a ,  associated with 
Z z'., in a manner similar to the construction of Gi,: from YY',. First let 

= zw DR,  j .  y , :  { z  ..... ,z:,-}  (6.49) 

:~i,; = (DR,: ~ ~ - ~ '  1,j (6.50) 

Hi, j = {o~:Z~,.:eSei x.a}. (6.51) 

That is, Hi,: occurs when Z~'J is at a site in DR,: also occupied by one of 
the specified B particles, but by no "previous" A particle. 

We mimic the reasoning of (6.41)-(6.46). By (6.45) and (6.47), 

} ~ i  14} >1 [C5n/8  ] on G (6.52) 

for all i, j, no matter what the behavior of Zs ~''-, i' < i, or Z2".', Vi', j '  r j. 

(6.47) 

for appropriate C7 > 0 and large enough t, since n >t const. Y .  
We next concern ourselves with the motion of the A particles. Let zi,: 

and Z ~'. be the initial positions and random walks associated with the A 
particles, with j ~ j a .  We let i = 1,..., Ij, where 
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Let ~,.j be the a-algebra generated by G, Hr, j with i' < i, and by Hi,,j, with 
j '  # j .  Because of (6.37), (6.52), and (6.36), on G, 

P[Hi, jl ~ , j ]  ~> (C5)2(C1 /~ �89 C9 (6.53) 

for R not too small, where C9 > 0. As before, it is not difficult to see that 
the m-tuple 1H,.j, i = 1  ..... Ij, j E J  ~, dominates i.i.d, random variables 
A W1 ,..., "~ Wm, on G, with 

P[AWi= I]=C9, p[AWi=O]= I--C9, (6.54) 

where m is given in (6.48). Applying Corollary 1 of Lemma 4.3 again, one 
obtains 

] I m 1 P 1H,.j~C9m/21G <~P ~IAW~<.Cgm/2 <~e -c'~ (6.55) 

for appropriate Clo > 0. Plugging (6.48), (6.46), and then (6.37) into (6.55), 
it follows that 

PI~la% <<'C3MI~e qlM+e-C7n~exp{_C4(MAR a)}, (6.56) 
L , : j  , A 

for appropriate choices of C3, C4, C1~ > O. Of course, 

i , j  

and so (6.33) follows from (6.56). | 

Lemma 6.5 has the following consequence when reinterpreted in terms of 
the process ~'. 

Corollary I. Let R = x / - ~ >  t ~ for some e>0 .  Assume that for some 
C1, C2, 1 > 0, 

~g,j(0; t~)>>.CiR d forall j e J 6 ,  (6.57) 

~A,j(O;t'~)~c2Rd forall j e J  6, (6.58) 

and 
A ~3,6(0, ,~) ~> lga(t ). (6.59) 

Then for C3, C4 > 0 as given in Lemma 6.5, 

for large t. 

P L ~  ,~-~ ~ ' ~  ~)~#(s; ,~) >_ 1 - - ~ ]  ~< exp{-C4((lga(t)) /x Ra)} (6.60) 
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ProoL The hypotheses of Lemma 6.5 are satisfied with 

M = ~)~,6 (0; 0) = ~,6(0;  t~) >~ lgd(t). 

So by (6.33), for large t 

P[dg3,~ (s) < C3 M] ~< exp { - C4(M A Rd)} 

~< exp{-C4((Iga(t)) A Ra)} 

for the process 0. Under the event 

{~{3t~(s) > C3M}, 

(6.61) 

(6.62) 

at least C3M pairs of A and B particles cohabit the same sites at time s. 
For ,~ (which has the same percolation substructure and initial data as 0), 
this means that either at least C3M/2 A-particles or at least C3M/2 
B-particles have been annihilated by time s, since A and B particles cannot 
be present at the same site. For each B particle which disappears, there 
corresponds an A particle which disappears. (The converse is false for t~.) 
So in either case, at least C3 M/2 A-particles are lost. It follows that under 
(6.62), 

A ~As,  t~') C3 
~ > 1 - - -  

~ 3Ate(0; ,~) 2 

(6.60) follows from this and (6.61). | 

Let 9lA(t) denote the number of A particles which intersect DR at any 
time se  [t, 2t] for the process 4.-In Lemma 6.6, we show that 9t(,~(t) is 
typically at most of order ga(t). This will be combined with Lemma 6.2 in 
Proposition 5. Lemma 6.6 is shown by iterating Corollary 1 of Lemma 6.5, 
and then using Lemma 6.3 to go from ,~ to 4. Lemma 6.4 is used to verify 
that the hypotheses of Lemma 6.5 are typically satisfied here. We will use 
the following notation. We introduce the events 

B H k - {~3~i.s(s,; ,~)>�89 j e J ~ } ,  (6.63) 

A S " H~ = {~)et.s( i, ,~) < 3rARr for all i~< k, j e  j~} ,  (6.64) 

HE { A  . = ~3,o(sk, t~) >~lga(t)}, (6.65) 

where sk, R1, f ~  are defined at (6.26), and l >  0 (but small) will be chosen 
later. Set 

H k  = A B H k n H k . H k c~ g (6.66) 
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g k ~'; therefore Hk$ as k T. Let Note  that H k + as 

= m a x { k ~  [0, K -  1]: cn c Hk}, (6.67) 

where K is defined below (6.26). Also, recall that t~s is measurable with 
respect to the ~r-algebra ~ (on the percolat ion substructure and initial 
state of ~) in t roduced in Section 1. Of course, Hff, H i ,  H~ e ~k .  

Lomma 6.6. Assume that A and B particles are initially distributed over 
Z a according to (1.1) with r A < r B. For  appropriate  6 > 1/2 (depending on 
rA, rB) and any constant  C12 > 0, there exists C13 > 0 so that  for large t, 

P[~R~,~(t)/> C12(rB - -  ra )ga( t ) ]  <~ exp{ - C~3(rB-- rA) ga(t)}.  (6.68) 

For  d>~ 3, one can choose 6 > 1. 

ProoL The hypotheses of Corol lary 1 of Lemma 6.5 are satisfied at time 
sk on Hk, where C1 = �89  C 2 =  23-rA. So on Hk, 

F~At~ 1 1 P L  ~ > l - s C 3 [ ~ e  <~exp{- -C4(( lgd( t ) )A  Ra)} 

(for large t). By assumption,  

Ral = L a/e g u( t ), 

so the right side can be rewritten as 

exp{ - C4(l/x L a/z) ga(t)}.  

Choosing L large enough, this equals 

exp{ - C a l g d ( t ) } .  

Iterating, we obtain that 

P[-~A,a(SK+, ,~)~>(1 t ~ A . �9 -- ~3,a(0, Kexp{  -- (6.69) , 2C3) ,~')] ~< C4lgd(t)}. 

Note  that A . ~)3t~(s, ,~) is decreasing in s (under ,~', there are no A 
particles outside D3t~ ), and that sk ~< t. Since So = 0, 

Also, 

~te (O; t ' ( )<3a+lrA tad  on H A . 

H g c~ {~ < K -  1 } c (H~)  ~ w (H,~) c. 
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So (6.69) implies that 

p [ ~ A t a ( t , t ~ ) ~ ( ( 1  __ ~C3)1 K 3 a+ 1 rAt6d) v ( lgd( t ) ) ;HAc~H~]  

~< Kexp{ -- C4lgd(t)). (6.70) 

In other words, if there are always enough B particles and few enough A 
particles to perform the iterations for all k, the iteration will only stop 
before K if lgd(t) has already been reached. 

We apply Lemma 6.4 to estimate the right side of (6.70). Setting 
N = C4l in the lemma, L can be chosen large enough so that 

A c  B e  P[(HK) w (HK) ] ~<2 exp{ --C41gd(t)}. (6.71) 

Together with (6.70), this implies that 

P[~f , , ( t ;  ,~)~> ((1 - �89 K 3 a+ t 6a) ira v (lg~(0)] 

~< (K+ 2) exp{ -Calga(t)}.  (6.72) 

Now, K was chosen in (6.26) so that K =  [(log t)/L] in d = 2  and 
K =  [t(a-2)/a/L] in d~> 3. It is easy to check that for large t, 

(1 - 5C3)1 K3d+ lr A taa<t I ~' (6.73) 

for some d > 0 ,  if6 is chosen close enough to 1/2 in d = 2 ;  in d~>3 we can 
use almost anything, but content ourselves with 3 > 1. Note that the choice 
of 6 in d = 2 depends on C3 and L, which in turn depend on r A and rB. For 
t not too small, 

t l - e ' < ~  lga( t ) .  

Using (6.73), (6.72) therefore simplifies to 

P[7~A,,(t;,~)>>.lga(t)]<~(K+ 2 )exp{ -Ca lgd ( t ) } .  (6.74) 

Recall that t~ differs from ~ in that A particles automatically disappear 
upon entering (D3,6)c. (6.74) gives bounds on the probability that there are 
at least lgd(t) A-particles from ,~ which visit Dzt6~D3t6 after time t. 
Lemma 6.3, on the other hand, gives bounds on the probability that ~ and 
t~ differ by much o n  Ozp and s E [-0, 2t]. The quantity cg defined there is 
an upper bound on the difference in the number of A particles visiting Ozta 
up to time 2t for ~ and ,~. By choosing 6 > 1 in d~> 3, we conclude from 
(6.22) that for large t, 

P[  fg 4:~:3 ] ~< exp { - c9 t6'}, (6.75) 
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where c~'= 6/x ( 2 ~ -  1 )>  1. The right side of (6.75) is of smaller order than 
that in (6.74). Combining (6.74) and (6.75) gives 

P[gl(t~(t) ~> lg,(t) ] <~ (K + 2) exp{ - C f l g , ( t ) }  + exp{ - c9  t~' } 

for large t. Choosing l =  C12(re--rA) and C~3 < C4C12, we obtain (6.68) in 
d~> 3. For d = 2  (and d~> 3 if desired), use (6.21) to conclude that for any 
c 7 > 0  there is a c8 > 0  so that 

P[I ,~f/> c7(r ~ -  r , )  ga( t) ] <~ exp{ - c s ( r ~ -  r , )  ga( t) }. 

Together with (6.74), this gives 

P[912A,,(t) >~ (l+ c7(ra -- r A)) ga(t)]  

~< ( K +  2) exp{ - C4lga(t)} + exp{ - c s ( r B -  rA) ga(t)} 

for large t. Choosing l=C12(r  B - r  A)/2, c7=C12/2, and C13< 
(C4C12/2)/x c8, we obtain (6.68) in d =  2 as well. 

Sharp Upper Bounds on PA(t) Proposition 5 

We can now use Lemmas 6.2 and 6.6 to prove Proposition 5. We will 
use the following notation. Define J ~  similarly to ~r just above (6.26), 
with J ~  denoting those indices j with 

D /7, s :~ D,~ r ~ .  

Expand D,6 slightly to 

D,~= ~) D,/7,s; 
J~ J~ 

define ~to analogously. Of course,/)t6 ~ O(4/3)t~ for 6 > 1/2 and t large. Let 
r/~, s ~> t, denote the process consisting of A and B particles which execute 
noninteracting random walks and for which q~ = 3,. Let yO be a random 
walk with Y0 ~ = 0. (It may be thought of as corresponding to an A particle.) 
Set Y,-~ y~o_ y~ for s ~ It, 2 t ] ;  then ~ o =  0. This "initial state" will sim- 
plify notation for us. Also, set ~ =  ~ -  yO. Since the movement of y0 is 
independent of ~ and ~ is translation invariant, ~" has the same distribution 
as 3. The same of course also holds for 0 ' = t / ' -  yO. We introduce the 
following quantities for the process 0': 

!~6(t) = # of B particles in/3,~ at time t which meet ~-o over It, 2t]. (6.76) 

~ ( t )  = # of B particles in (6.76) which remain in Ozt6 o v e r  It, 2t]. (6.77) 

~ ( t )  = # of B particles in (6.76) which do not remain in D2,6 over It, 2t]. 

(6.78) 
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Of course, ~ ( t ) =  ~ ( t ) +  ~2~(t). Also, let E~(t) denote the event that ~o 
remains in Dt~ over It, 2@ In d = 2 ,  we will also need to employ the 
analogs of (6.76) (6.78) and E~(t), where time is translated t units (so 
[-t, 2t] becomes [2t, 3t]) but everything else remains the same. Y , -  
Ys~ yO, s t  [2t, 3t], will replace Yr.~~ To denote the analogs, we insert 
" ^ , "  e.g., ~ ( t ) ,  /~a(t). The same correspondence will be made for 
quantities introduced later. ~ ( t )  will correspond to Jg'~(t), etc. As will be 
indicated, equivalent statements will hold for the . . . . .  quantities. 

We summarize our basic reasoning. It will follow from Lemma 6.2 that 
on E~(t), 9~(t) is typically of order gd(t). It is a simple large deviation 
estimate that !~(t)  is small. So !~(t) must also be of order ga(t) 
((6.80)-(6.82)). But on account of Lemma 6.6, these B particles remaining 
in D2t~ can only meet on the order of gd(t) A-particles. Choosing 
coefficients properly, ~ ( t )  can be made larger than this last quantity. So 
even for the process ~', at least one of these B particles will survive to hit 
~0 by time 2t, except for a small probability ((6.83)-(6.85)). The proba- 
bility of ~-0 leaving D,~ by time 2t is also not large ((6.86)). Associate ~0 
with the path of an A particle (with some continuation after the particle 
is annihilated). This reasoning therefore gives upper bounds for pA(2t). 
For 6 > 1  (d>2) ,  the last probability ((6.86)) is small enough for our 
conclusion in Proposition 5 ((6.87)). For 6 > 1/2 (d=  2), the estimate is not 
yet good enough. Our bound on the density of A particles is still too high. 
It gives a marked improvement however over the bound in Lemma 6.6. 
Using this improvement, one can repeat the above argument, this time with 
6 > 1. This gives the correct bounds in d = 2 as well. 

Proposition 5. Assume that A and B particles are initially distributed 
over 7/d, d>~ 2, according to (1.1) with r A < re. Then 

pA(t) <~ exp{ --)~(rB-- r A) ga(t)} (6.79) 

for appropriate 2 > 0 (depending on d) and large enough t. 

Proof. We break the argument into two parts. 

Part I - - d > 2  and preliminary bounds for d=2.  For d>2,  we will 
consider the evolution of a random walk yO (with Yo ~ = 0) over the time 
intervals [0, t~] and Its, 2tl],  with tt = t/2. For d = 2 ,  we will also use the 
interval [2tt,  3t~] and set t~ = t/3. To demonstrate (6.79), it suffices to 
show that the probability that y0 does not meet any B-particles from 
over [ t~ ,2h ]  (or over [2tl,  3t~], in d = 2 )  is at most as great as the 
probability given in (6.79). (A little thought shows that introducing yO 
into the system instead of choosing an already present A particle in effect 
inserts another A particle at 0 into ~. By Lemma 3.2, this will decrease the 



Asymptotic Densities for Two-Particle Annihilating RWs 359 

probability of an individual A particle being hit.) It will be convenient to 
use the quantities ~o, ~', and 0 'x introduced just before (6.76). Recall that 
]70 = 0 and that ~ and 0" have the same distributions as r and ~/" and are 
independent of ~-o. In the following computations, we will drop the 
superscript " ~ "  from Y, ~', and g/~l and write, e.g., yO = 0. 

We first note that by Lemma 5.1, 

P [ ~ , i ( t x  ; rl") <~ � 8 9  rA) t~/2 + 1 for some j e J ~ ]  

f 
<. t~ a exp ) i4~B J 

for large t; we assume 6 > 1/2. One can therefore apply Lemma 6.2 with 
~ = (r e -  r A)/3 to obtain 

P[~6( t l )  ~< cl(r e -  r A) ga(tl)/6; E6(tl)] 

~<exp{--/3 c l ( re - - rA)  gd(tx)/12} + t~6a exp { 
( r e - - r  A)2t~/2~ 

24r e J' 

where the constants are the same as in the lemma. Simplifying, we see that 
for large t, 

PEe6(tl)  ~< C14(r e -- r A) ga(tl); Ea(t,)]  

~< exp{ - C15(r e - r A) ga(t l)  }, (6.80) 

where C14 , C15 > 0 are appropriate constants. 
On the other hand, by Lemma 5.1 (with rA=0) ,  

P E ~ ( t l  ;r/tx ) >~ 2ret61 a] <~ exp{ -rBt~a/24} 

for large t. Also, by (6.16), the probability that an individual B particle 
from /3t~ leaves Dzt ~ by time t 1 is at most 4 d e x p { - c 6 t ~ ' / 4  }, where 
6' = 6/x ( 2 6 -  1). One can therefore apply the corollary of Lemma 4.3 to 
obtain 

PE~(tl)  >/C14(rB -- r A) ga( t l ) /2  ] 

~< P[  # (B particles in/3,~ at tl, but exiting Dzt ~ over It1, 2tl ]) 

>>- Ct4(r e -  r A) ga( t l)/2 ] 

~< exp { - re t~a/24 } + exp { - flC14(r~ - rA) ga(tl )/4 }. 

(We are setting n = [2ret~a], p = 4 d e x p { - c 6 t ~ ' / 4 } ,  and 6 = 
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(C14(rB--rA)gd(tl)/2np)--1 >> 1 in the corollary.) Simplifying, we see that 
for large t, 

P[.~(tl)>~C~4(rB--rA)ga(ta)/2]<~exp{--C16(rB--rA)gj(tl)} (6.81) 

since 6 >  1/2. Together, (6.80) and (6.81) show that 

P [ ~ ( t l )  ~< C~4(rB - r A) gd(tl)/2; Ee(tl)] 

~< exp{ - C17(rB-- rA) gd(tl)}, (6.82) 

where C~7 > 0. (Note for use in d =  2 that the analog of (6.82) holds for 
~1(tl), since Lemma 6.2 can be applied at time 2t~ as well; the reasoning 
from (6.80) on is the same.) 

We employ (6.82) together with Lemma 6.6. The lemma gives upper 
bounds on the number 9l~t~(tl) of A particles for the process r intersecting 
D2,~ over It1, 2tl]. Choose C12 = C14/2 there. It follows that 

P[9lAt~(tl) ~ > C14(rB--rA)ga(tl)/2] <~exp{--C13(r~--rA) gd(tl)} (6.83) 

for appropriate 6, with 6 > 1 in d >  2 and 6 > 1/2 in d =  2, and with C~3 > 0. 
Fix this 6. (6.83) gives bounds on the number of B particles for the process 

which remain in D2t ~ until they are annihilated at some time in It1, 2t~] 
by an A particle; denote this number by 9l(,~(tl). Since only one B particle 
is annihilated by each A particle, 

--~ 912,~(tl ). 

So by (6.83), 

P[92~,~>~C~4(rB--rA)gd(t~)/2]<~exp{--Ct3(rB--ra)gd(t~)}. (6.84) 

Recall that ~ and r / a r e  coupled together with 

. ( ~ t ~ B  s > ~ t l .  

In particular, the B particles of ~ correspond exactly to the B particles of 
q t~ except where the former have been annihilated by A particles. Let 
~('~(tl) denote the number of B particles in ~ which meet yo in Its, 2tl]  
(before the B particle is annihilated). It follows from (6.82) and (6.84) that 
for large t, 

P[X~(t~)=O;E~(tl)]<~exp{-C~8(r~-rA)ga(tl)}, (6.85) 

where C~8 > 0. That is, off of the exceptional events in (6.82) and (6.84), 
6 B ~l(t l)  > 9]:2t~(tl) , in which case yo meets at least one B particle in ~ during 

It1, 2tl]. 
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We still need to look at (E~(tl)) c. On account of (6.17), for large t, 

P[(E6(tl)) c] ~< 4d exp{ -c'6t~'}, (6.86) 

where 6 ' >  1 in d > 2  and 6 ' > 0  in d = 2 .  Together with (6.85), this shows 
that 

P[~f~(t~)=O]<<.exp{--C~9(rB--rA)ga(t~)} for d > 2 ,  (6.87) 

where C~9 >0.  Multiplication of the right side of (6.87) by the initial 
density r A of A particles gives an upper bound for pA(t). Substituting in 
t =  2t~ and 2 < C19/2 , this implies (6.79) for d >  2. | 

In the case d =  2, the bound (6.86) is not good enough to give (6.79). 
Before proceeding to improve (6.86), we pause briefly to point out some of 
the complications one encounters in d = 2. The choice of 5 > 1/2 (and hence 
5'  > 0 )  was made in Lemma 6.6. It can be checked that if the right side of 
(6.68) were replaced by the term exp{C13(rA, rB)ga(tl)}, CI3(rA, r s ) > 0 ,  
then 5 > 1 could be chosen for d = 2 as well. The analog of (6.87) would 
then hold in d =  2 as well but with some function C19(rA, t'B) substituted 
for the product C19(rB--rA). The main complication in d =  2 arises from 
the need to consider cubes DR~ with R 1 large, if (6.69) and (6.71) in 
Lemma 6.6 (with l =  C12(rB--rA)/2) are to hold. For R 1 large, L in (6.26) 
will be large; this restricts the number of iterations of Lemma 6.5 available 
for (6.73) in Lemma 6.6, which in turn may force us to choose 6 < 1 if the 
bound on 91zA, l(q) on the left side of (6.68) is to hold. For d > 2  on the 
other hand, (6.73) easily holds no matter what the choice of L. Note that 
this whole procedure is meaningless in d =  1, since for the bound on the 
right side of (6.68) (even in weakened form) to hold, one would need to 

plug s~ = R 1 ~ ~ into (6.60), which would leave no time for iteration. 

Part II--Conclusion for d = 2 .  The bounds given in (6.85) over E~(tl) 
suffice for d = 2  as well; it is the set (E6(t~)) c in (6.86) which presents 
difficulties. We take advantage of (6.85) by decomposing pA(S) into pAl(S), 
p A2(S), with p A(s) = p A~(s) + p A2(s), so that 

pA,(s) = density of A particles at time s which have remained in 

y + D,~ over [ t l ,  (2t~)/x s], 

pA~(s) = density of A particles at time s which have not remained in 

y + Dt~ over I-t1, (2tl)/x s], (6.88) 

where in each case, y is the position of the particle at time tl. Call the two 
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classes of A particles referred to in (6.88), A1 particles and A2 particles, 
respectively. On account of (6.85), 

pa~(2t2) <. rA exp{ - CIs(rB -- rA) gd(tl)}. (6.89) 

On the other hand, ,~?A2, s >~ 2t~, is dominated by A2 t/, , where as always, 
is the process whose random walks never interact and which is coupled to 
r Since the A2 particles in r /move independently, the probability given in 
(6.86) is small enough to give us the analog for A 2 particles of (6.68) in 
Lemma 6.6 for any 61 > 1, if we delay our procedure by t2. We will be able 
to use this and (6.89) to obtain the analog of (6.83), but for 61 instead of 
only for some 8 >  1/2. The remainder of the reasoning through (6.87) 
follows exactly as before, but where we can now employ the improved 
bound given in (6.86) to obtain (6.79). Before proceeding with the argu- 
ment, we note as in the beginning of the proof that it will be convenient 
to translate 7/a, this time by y O ,  when considering the interaction of yO 

o _ o yO Y~ = 0. As before, ( =  ~ - Y~ and ~ on s e  [2tl ,  3t2]. For Y~ - Y~ - 2,1, 
has the same distribution as ~, and OA2 = ~/A: _ y O  the same distribution as 
qA2. We drop the superscript . . . . .  from l 5, f, and ~A2. 

We first note that since pAl(S) is decreasing in s, the bound in (6.89) 
holds at s =  3t~ as well. So for large t and fixed 62, 

P[~3Alo(3t2;~)r e x p { _ C 2 s ( r s _ r A ) g a ( t l ) }  ' (6.90) 

A random walk which is in D2t~ at some time in [2t2, 3tt]  will typically 
(with probability close to 1) still be in D3,~ at time 3t2. The reasoning is 
standard and was given after (6.24). So (6.90) implies that for large t, 

P[~)A~(S; ~) -r 0 for some s e [2tl,  3 t l ] ]  

~< exp { -- C2o(r~ - rA ) ga(t2 )}, (6.91) 

where C2o > 0. 
On account of (6.86) and the independence of the motion of particles 

in tt, tl A2, 2t1<~s<<.3tl, has a Poisson measure with density at most 
4drA exp{--e'6t~'), 8' >0.  It is therefore not difficult to show that 

P[ # (A2 particles in ~ intersecting Ozt~l over [2tl, 3t l ] )  >~ C14(r B -- rA) ga(tO/2] 

~< P[ # (A2 particles in q intersecting D2,~ over [2tl, 3tl]) ~> C14(rB-- rA) g~(t~)/2] 

~< exp{ -- C21(r s-- r A) ga(tl) } 

(6.92) 
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for C14 as chosen earlier and C21 > 0. One can for instance make the same 
substitution for the density as used for (6.24) in the proof of Lemma 6.3 to 
obtain a comparable upper bound on the number of A2 particles in D2t~ 
at time 3tl. One can then once again reason as after (6.24) to extend this 
bound to (6.92). 

Together, (6.91) and (6.92) show that 

PiVOtal( t1)  >1 C14(r B - r A) ga( t ,  ) / 2 ]  

= P[ # (A particles in s intersecting D2,~l over [-2tl, 3tl ] ) >~ C~4(r~ - rA) ga(tl)/2] 

~< exp{ -- C22(rD-- rA) gd(tx)}, (6.93) 

C22>0. (6.93) corresponds to (6.83), the only difference being the time 
interval [2tl,  3tl] here instead of [-tl, 2tl]. As in (6.84), this gives an upper 
bound on the number of B particles ~2a?,(t~) remaining in Ozt~t over 

�9 . 1 . 
[2tl,  3tl] which can be anmhllated. As mentioned earlier, the analog of 
(6.82) which gives a lower bound on ~ ' ( t~)  holds. Comparing ~l( t~)  and 
~tzs,~(t1), we see that the analog of (6.85) for o,~6~(tl) and/~6~(tl) therefore 
holds. That is, on /?~(t~), y0 typically meets at least one B particle in 
during [-2t~, 3t~]. On the other hand, (6.86) clearly holds if E6~(t~) is 
substituted for E6(t~). Here, however, ~51 > 1, and so 6~ > 1. Applying these 
versions of (6.85) and (6.86), we see that the analog of (6.87) holds in 
d = 2  as well�9 Substituting t = 3 t l ,  this implies (6�9 for d = 2  with 2 <  
( C I 7  A C22)/3. I 

Z Upper Bounds for Unequal Densities, d = 1 

In this section we give upper bounds on pA(t) for d =  1. Here, the 
argument is different than that for d~>2. For d = l ,  there are not suf- 
ficiently many B particles close enough to a given A particle to apply the 
iteration scheme used in Lemmas 6.4-6.5. On the other hand, one can now 
use the linearity of Z. In particular, particles cannot pass by one another 
without meeting�9 The different nature of the arguments for d =  1 and d >  1 
is not too surprising given the different dependence on the initial densities 
rA and r B. 

Here, we modify notation somewhat and let 

~3 x = ( # B particles) - ( # A particles) at time 0 -  in [ 1, x ] (7. la) 

if x > 0; for x ~< 0, we let 

~x = ' ( # B  particles) -- ( #A  particles) at time 0 -  in Ix, 0]. (7.1b) 

Our first lemma gives a simple bound on how small ~x can get. 
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Lemma  7.1. 
7/according to (1.1) with r A < r B. Then for x >i 0, 

P[~)y<~ �89 A)x for  some y, ]y[ ~>x] 

~< C1 exp{ -- (r e -  r A)zx/24r e}, (7.2) 

where C1 depends on rA, re, and 

P[  ~y ~ - U  for some y ] ~< 2 ( rA ] U <~ 2e - N(rB rA)/rB. (7.3) 
k r M  

Proof. By Lemma 5.1, 

P[~y<~�89  (7.4) 

Summing up these probabilities over [y[ ) x  gives 

P[~ ,<~ �89 r A)x for some y, [y[ >~x] 

<~P[~y<~�89 for some y, [Yl >~x] 

<~2 ~ exp{ - - ( r s - - rA)2k /24r~}  
k = x  

= 2 exp { - (re - rA)Sx/24rB }/(i -- exp { -- (rB -- rA)2/24rB } ); 

this implies (7.2). One can use moment generating functions as in 
Lemma 5.1 to obtain estimates like (7.3). Instead, we proceed as follows. It 
is easy to check that the random variable 

My = (r A/rB) :~; 

is a positive martingale in the parameter y ~> 0, since each particle present 
at time 0 -  has probability rA/(r A + re )  of being an A particle and 
rB/(r A + re) of being a B particle; Mo = 1. Stopping My at 

T n = m i n { y > 0 :  ~y~< - N }  /x n 

and applying Chebyshev's inequality gives 

k r M  \ r e /  

Letting n ~ o% we obtain 

P[:Dy~ - N f o r  some y > 0 ]  ~< lim P [ M r  <~ - N ]  ~ rA 

Including negative values of y gives the factor of 2. | 

Bramson and Lebowitz 

Assume that A and B particles are initially distributed over 
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We now sketch the main  idea behind Propos i t ion  6. We will show that  
except on a set of exponential ly small probabil i ty,  there will always be a 

pair  of B particles, one start ing f rom [1, 6x / - t ]  and the other  f rom 
[ -  fx / - t ,  0]  (6 > 0 to be chosen later), which meet  by t ime t. An A-particle 
start ing at 0 must  have already, in this case, met  some (other)  B-particle 
by t ime t. 

To  be more  specific, we introduce the following notat ion.  Let  

F1 = {~y  > �89 - rA) fix/)- for all y, [y[/> f x/-t  } 

and 

F 2 = {33y > - �89 e -  rA) f ~  for all y}. 

Set F =  Fx r~ F 2. By L e m m a  7.1, 

P[U] <~ P[F~] + P[U2] 

~< C2 exp{ - ( r ,  - rA) 2 fx/-t/Z4r,}, (7.5) 

where C2 depends on rA, re.  On account  of (7.5), we will be able to restrict 
our  a t tent ion to the set F. 

We begin by construct ing processes X~, k = - K - ,  .... - 1 ,  1 ..... K +, 
cor responding to the mot ion  of B particles with 

K+->..-[�89 on F. (7.6) 

Here  and later on, we will only specify the behavior  for k > 0, it being 
unders tood  that  k < 0 is defined correspondingly  after reflecting abou t  0. 
The processes X k will be r a n d o m - w a l k s  with drift to the left on an 
appropr ia te  set G1 ~ s We begin by setting 

X~=xk=min{x:  l~x<.fx/~,Y~y>-k, Vy>~x }. (7.7) 

K + is to denote  the largest such index where the inequality is attained. 
Clearly, there are at least as m a n y  B particles at x as indices k with x k = x. 
We initially tie the mot ion  of X ~ to that  of the corresponding B particle. 
We call such B particles "marked ."  Note  that  on FI ,  (7.6) holds. We will 
short ly cont inue X ~ so that  

x k ~< rk, (7.8) X s = Y~ - Z s for s 

where yk is a r a n d o m  walk with Y~_ = Xo k_ = xk, and Z k is an increasing 
process on G1 with Zo k = 0. yk for different k will be independent  of one 
another ,  vk will be the t ime at which X k disappears.  
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To do so, we first consider the remaining (=  unmarked) B particles, 
and all the A particles. Order the initial positions aq~ and Bqj of these A 
and B particles so that for i< i', j < j ' ,  

Aqi << Aqr ' Bqi <~ Bqj,. (7.9) 

Introduce processes AQ~, BQ~, with AQ;= Aq~, eQ~= 8qj, which evolve 
according to the corresponding A and B particles. We will find it con- 
venient to use the convention that as long as the particles involved survive, 
the analog of (7.9) holds for A particles, that is, for i <  i', 

AQ~<aQ~,. (7.10) 

Of course, this ordering just involves bookkeeping since A particles are 
indistinguishable, and so does not affect the behavior of our underlying 
process ~. (With a little more work, one could avoid this ordering.) Denote 
by A~r i, %j the times at which AQi and BQj are annihilated. 

In Proposition 6, we will show that with high probability, B particles 
starting from [1, or) and from ( - o %  0] meet by time t. Any A particle 
starting at 0 must therefore be annihilated by then. We find it convenient 
to let Z ~ be a designated A particle in ~ with Z ~ = 0, and G1 the event that 
it survives up until time t. To demonstrate the proposition, it will be 
enough to obtain good upper bounds on P[G1]. Since the evolution of A 
particles is assumed to be order preserving, no B particle from either side 
of Z ~ can hit an A particle from the other side without first hitting Z ~ So 
under G1, the systems of particles starting in [1, oo) and in ( - ~ ,  0] can 
be treated as separate noninteracting systems. We use this for the purpose 
of constructing our processes X k below and for Lemma 7.3. The processes 
X k and X ~ will correspond to the motion of B particles. On account of 
(7.8) and its analog for negative indices, X k and X -k will behave on G1 like 
independent random walks with drift toward one another. (Z -+k will arise 
from the substitution of another B particle after each annihilation.) On F 
the number of such pairs is large; the probability that no such pair meets 
by time t should therefore be small. This reasoning, which resembles a 
proof by contradiction, will enable us to show that P[GI] is in fact 
exponentially small. 

To define X k, we first establish a relationship between {~Q~} and 
{BQj} on G1. We let q~0-(J)= i denote the index of the first A particle 
which at time 0 -  lies to the right of (maybe at the same spot as) the j th  
unmarked B-particle and ( i - 1 ) s t  A-particle. So all unmarked B-particles 
are initially "associated" with A-particles which are to their right. Let 
~bo_(i ) = j  denote the inverse of q)o-, where we set q/o-U)= - o o  if there 
is no B particle associated with the ith A-particle. We continue Os(i)=j,  
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s > 0 ,  on G~ so that g/~(i) remains constant until either the A or the 
associated B particle is annihilated. For s~> %~, set g/s(/)= oo. More 
importantly, at s = %j,  do the following under ~aj < Aa~, in which case BQj 
annihilates s o m e  AQ~, with i' ~ i: set O~(i) = Os (i'). That is, AQe adopts as 
its associate the former associate of the A particle just annihilated by AQ~'s 
own former associate 8Qj. Since B j A Q,_ < Q,_ ,  it follows that i '  < i, and so 

BQj' < A r Q~ (7.11) 

where j ' =  g/~_(i'). The new associated B-particle (for g/,(i)-r oo) therefore 
also lies to the right of AQ~. Continuing in this manner, one defines g/s for 
all s. 

We define Xs k on G1 to be the position of the corresponding marked 
B particle (from time 0-- ) until the time s = T~ -- Aa i at which the particle 
is annihilated by the ith A-particle. If j =  g/s ( i ) r  - 0 % then we identify X k 
with ~QJ starting at time s, until that particle is in turn annihilated. Label 
BQj starting at time s as marked. If g/s ( i )=  - o %  then we set Tk=S, at 
which time X ~ disappears. One can construct X k on G~ for all s by using 
this procedure at the times T1 k, T~ .... at which the corresponding B-particles 
are annihilated. On account of (7.11), it is easy to see that 

X~ < Ark at s = Ty, l =  1, 2,.... (7.12) 

One can therefore represent X k as in (7.8), where 

z ,  Zs = -(Xs Xs ). (7.13) 

Clearly, Zs k is increasing in s. y k is the random walk motion of X k between 
these times and is independent of the other random walks corresponding to 
different values of k. We can also represent X k as in (7.8) on G~, except 
that we now have no control over Z k since particles from ( - 0 %  0] may 
become involved. The nature of X k on G1 will not be important. We will 
find it convenient to always extend yk (still as a random walk) for all s, 
including s > ~k. 

To demonstrate Proposition 6, we need two observations, which we 
state as lemmas. We let 91f be the number of unassociated A particles on 
G1 at time s (particles still surviving with g/s-- - o r )  with initial positions 
to the right of 0; 9l S is defined analogously, but for the system of particles 
starting to the left of 0. Also, let d s  + ( d  s )  be the number of processes X k 
with k > 0 (k < 0) which have disappeared by time s. By ~ (resp., M~x,B 
u ~ ,  r ~  = M33 ~ + VDBx) we will mean the number of A particles (resp., 
the numbers of marked and unmarked, and total number of B particles) 
initially in [1, x l ,  x > 0. 

822/62/1-2-24 
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L e m m a  7.2. On F n G ~ ,  

91 _ 

Proof.  We give the argument for 91~-_, since the case 91o- is analogous. 

Set N = [~(rB - r A ) 6 X / ~ ] .  We assume that there are unassociated A 
particles at Yl ~ " ' "  <~ YN. Let YN+ I >~ YN be the site of an A particle; we 
wish to show this A particle is associated with an unmarked B particle to 
its left. Note that 

~3yu+ t>/ - N  on F. (7.14) 

We assume that in fact the A particle at YN+I is unassociated, and show 
this gets us into trouble. Consider the two cases where (1) MT~B = 0  and YN+I 
(2) M~3B >0.  Under (1), (7.14) implies that YN+I 

U~B = T ~ B  = ~ ) A  A f _ ~ ) Y N + I ~ A  - - N  (7.15) 
YN+I YN+I YN+I YN+I 

on F. On the other hand, at most one B particle is associated with each of 
~A the other ( y ~ + l - ( N + l ) )  A-particles to the left of YN+I,  and these 

N +  1 unattached A-particles contribute no B particles. Moreover, each 
unmarked B particle to the left of YN+I must be associated with an A 
particle to the left of YN+~" One therefore also has 

u~B ~<~a - - ( N + I ) .  (7.16) YN+ 1 YN+ [ 

(7.16) contradicts (7.15); the particle at YN+I must therefore be associated 
with a B particle to its left in case (1). 

Under (2), 

~YN+I ~ m~)B (7.t7) YN+! 

because of our definition of marked particles in (7.7). (This is the reason 
for the proviso "Vy/> x" there.) Consequently, 

M B 
U~ByN+I __~AyN+I = ~)YN+ 1 - -  ~ ) y u +  l ~ 0 "  (7.18) 

So there are at least as many unmarked B particles as A particles to the 
left of YN+a; the A particle at YN+~ must therefore be associated to some 
B particle to its left in case (2) as well. | 

L e m m a  Z3 .  On F(3 G1, 

91~-_ - 9l + ~> d + for all s. (7.19) 

Proof.  Based on our construction, on G1, X k can only disappear when it 
hits an unassociated A particle starting from the same side of 0. So by time 
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s, d + unassociated A particles have been annihilated due to interaction 
with marked B particles. On F, 9I + is finite, and can never increase. For 
when AQi is stripped of its associated B particle at time s, BQj with 
J = O s - ( i ) ,  then either (1) it receives another B particle eQ]" in return or 
(2) the A particle AQi' annihilated by eQj was unassociated. In the first 
case there is no change in unassociated A particles, whereas in the second 
case one is created and one is destroyed. Consequently, 

9l~_ - gt +/> ~r for all s. | 

One can in fact replace the inequality in (7.19) with an equality. If 
~A ~ OV as x ~ 0% then all B particles are either marked or attached to 
some A particle, and so 9l + cannot decrease without an unattached A 
particle hitting some X k. In the exceptional case where ~ stays bounded, 
some further thought shows this is still true. We will not use this direction, 
however. 

The following is a direct consequence of Lemmas 7.2 and 7.3. 

Corollary I. On Fc~ GI, 

Let Gz be the event that for at least l ( r e - r A ) 6 x / t + l  values of 
I<~k<<.K-(K + /x K ), the random walks yk defined in (7.8) and (7.13) 
satisfy 

Y~ = Y,~ for some s ~ [0, t]. (7.20) 

We will show in Proposition 6 that conditioned on F, G 2 o c c u r s  with high 
probability. Corollary 1 above puts �88  rA) 5 x f t  as the upper bound on 
the number of pairs of particles X ~ and X -k at least one of which is 
annihilated. Since X k, X -k are coupled to yk, y k but with an extra 
component of drift toward one another, under G2 some pair X k, X -k must 
also meet by time t. Any A particles starting in between this pair must be 
annihilated by time t. On account of the high probability of F given in 
Lemma 7.1, this implies (7.21). 

Proposition 6. Assume that A and B particles are initially distributed 
over Z according to (1.1) with r A < r e. Then 

p A( t) <~ exp{ --2((rB-- r A)2/r e )x /  t } (7.21) 

for appropriate 2 > 0 and large enough t. 

Proof. For 1 ~< k ~< K, Y~-- y k is a rate-2 simple random walk with 

Yo k - Yo k ~< 26 x/t-. (7.22) 
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It is a simple consequence of the central limit theorem and the reflection 
principle that for 6 small enough and t not too small, 

P [  Y~ = )17 k for some s e [0, t ] ]  >/3/4 

for each k. Also, by (7.6), 

K~[�89 on F. 

It therefore follows from Corollary 1 of Lemma 4.3, that 

p[ GCz l F] <~ exp{ - C3(r B-- r A) 6 X/-; } (7.23) 

for appropriate C3 > 0. Together with (7.5), this shows that 

p[FC~G~z]<~exp{-C46((r,-rA)2/rB).~-[} (7.24) 

for appropriate C4 > 0. 
As discussed after (7.10), to demonstrate (7.21) it suffices to obtain 

upper bounds on PIG1], where G1 is the event that a designated A particle 
Z ~ with Z ~ = 0 survives until time t. We may write 

G 1 = {X's k =/= Xs  k Vs, Vk} c5 G1, (7.25) 

where s e  [0, t] and l~<k~<Kare understood ( G l c  {.}). This is 

c ( { X k e X  kVsforzX>t,z-k>t}c~gc~G~c~G2)uFCwG~. (7.26) 

We will show that the quantity inside the parentheses is void by following 
the outline sketched after (7.20). 

Recall from (7.8) that on G~, 

X~_ x~-k ~ y~_ y•-k, for all s. 

The quantity inside the parentheses in (7.26) is therefore contained in 

({Y~=/=y~kVs, z~>t,z-k>t}c~rc~Gl)c~G2. (7.27) 

Also, by Corollary 1 to Lemma 7.3, on Fc~ G~, 

I{k:~k>t,  ~ k>t}cl~(rB--rA)Ox/~. 

So yk and Y k can meet for only �88 many pairs. By the 
definition of G2, this implies that the intersection of (.) with Gz in (7.27) 
is void. So the quantity in the parentheses in (7.26) is also void. 
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I t  therefore follows f rom (7.25)-(7 .26)  tha t  

P [ G , ]  <~ p [ F C w  G~2]. 

By (7.24), ( 7 . 2 8 ) i s  

This  last  t e rm can  be rewr i t t en  as in  (7.21). 

~< exp{ - -  C46((F B - -  rx)2/rB)~7}. 
I 
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